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ABSTRACT
Machine Learning graphs (or models) can be challenging or

impossible to train when either devices have limited mem-

ory, or the models are large. Splitting the model graph across

multiple devices, today, largely relies on learning-based ap-

proaches to generate this placement. While it results in

models that train fast on data (i.e., with low step times),

learning-based model-parallelism is time-consuming, taking

many hours or days to create a placement plan of opera-

tors on devices. We present the Baechi system, where we

adopt an algorithmic approach to the placement problem

for running machine learning training graphs on a small

cluster of memory-constrained devices. We implemented

Baechi so that it works modularly with TensorFlow. Our

experimental results using GPUs show that Baechi generates

placement plans in time 654×–206K × faster than today’s

learning-based approaches, and the placed model’s step time

is only up to 6.2% higher than expert-based placements.

CCS CONCEPTS
•Computer systems organization→Distributed archi-
tectures.
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1 INTRODUCTION
Distributed Machine Learning frameworks use more than

one device in order to train large models and allow for larger

training sets. This has led to multiple open-source systems,

including TensorFlow [1], PyTorch [39], MXNet [11], Theano

[47], Caffe [22], CNTK [41], and many others [28, 42, 53].

These systems largely use data parallelism, wherein each

device (GPU) runs the entire model, and multiple items are

inputted and trained in parallel across devices.

Yet, the increasing size of Machine Learning (ML) models

and scale of training datasets is quickly outpacing available

GPU memory. For instance the vanilla implementation of

a 1000-layer deep residual network required 48 GB mem-

ory [12], which is much larger than the amount of RAM

available on a typical COTS (Commercial Off-the-Shelf) de-

vice. Even after further optimizations to reduce memory cost,

the ML model still required 7 GB memory, making it impos-

sible to run an entire model on a single device with limited

memory, as well as prohibitively expensive on public clouds

like AWS [4], Google Cloud [16], and Azure [33].

At the same time, today, ML training is gravitating towards

being run among small collections ofmemory-constrained de-
vices. These include small groups of cheap devices like edge

devices (for scenarios arising from Internet of Things and

Cyberphysical systems), Unmanned Aerial Vehicles (UAVs

or drones), and to some extent even mobile devices. For in-

stance, real-time requirements [32, 55], privacy needs [9, 10],

or budgetary constraints, necessitate training only using

nearby or in-house devices with limited resources.

These two trends—increasing model graph sizes and grow-

ing prevalence of puny devices being used to train the model

graph—together cause scenarios wherein a single device is

https://doi.org/10.1145/3419111.3421302
https://doi.org/10.1145/3419111.3421302
https://doi.org/10.1145/3419111.3421302
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insufficient and results in an Out of Memory (or OOM) excep-

tion. For example, we found that the Google Neural Machine

Translation (GNMT) [52] model OOMs on a 4 GB GPU even

with conservative parameters: batch size 128, 4 512-unit long

short-term memory (LSTM) layers, 30K vocabulary, and se-

quence length 50.

This problem is traditionally solved by adoptingmodel par-
allelism, wherein the ML model graph is split across multiple

devices. Today, the most popular way to accomplish model

parallelism is to use learning-based approaches to generate

the placement of operators on devices, most commonly by

using Reinforcement Learning (RL) or variants. Significant

in this space are works from Google [34, 35] and the Placeto

system [2]. A learning-based approach iteratively learns (via

RL) and adjusts the placement on the target cluster, with the

goal of minimizing execution time for each training step in

the placed model, i.e., its step time.
While learning-based approaches achieve step times around

those obtained by experts, these approaches still take a very

long time to generate a placement plan. For instance, using

one state-of-the-art learning-based approach [34], NMTmod-

els required 562,500 steps during the learning-based place-

ment, and the runtime per learning step was 1.94 seconds—

giving a total placement time of 303.13 hours.

Such long waits are cumbersome and even prohibitive

at model development time, when the software developer

needs to make many quick and ad-hoc deployments [2]. In

fact, studies of analytics clusters reveal that most analyt-

ics job runs tend to be short [13, 51]. For instance, the step

time for a typical model graph (e.g., NMT or Inception-V3),

to train on a single data batch, is O(seconds) on a typical

GPU. Overwhelming this time with learning-based place-

ment times which span hours, significantly inhibits the de-

veloper’s agility.

In fact, the series of works on learning-based placement

techniques attempt to address exactly this shortcoming. They

progressively improve on training time to place the model [2,

34, 35]. Yet the fastest placement times still run into many

hours. One might possibly apply parallelization techniques

[23, 24, 50] to the learning model being used to perform

placement, in order to speed it up, but the total incurred

resource costs would stay just as high—hence, parallelization

is orthogonal to our discussion.

Additionally, a learning-based placement run works for

a target cluster and a given model graph with fixed hyper-

parameters (e.g., batch size, learning rate, etc.). If the model

graph were to be transitioned to a different cluster with dif-

ferent GPU specs, the learning has to be repeated all over

again, incurring high overhead. Next, consider a developer

who is trying to find the right batch size for a target cluster.

Table 1: Terms and Notations. Used in the Paper.

𝐺 Machine Learning graph to be placed

(Classical: Dependency graph of tasks to be placed)

𝑛 Number of operators (or tasks) in𝐺

𝑚 Number of devices in a cluster

𝑀 Memory available per device

𝑑𝑖 Size of memory required by operator (task) 𝑖

𝜌 Ratio between maximum operator-to-operator (task-

to-task) communication time and minimum per-

operator (per-task) computation time

SCT assumption Small communication time assumption: Ratio be-

tween maximum operator-to-operator (task-to-task)

communication time and minimum per-operator

(task-to-task) computation time is ≤ 1

makespan Training time for one data mini-batch, i.e., runtime

for executing a ML graph on one input mini-batch

This process of exploration is iterative, and every hyperpa-

rameter value trial needs a new run of the learning-based

technique, making the process slow.

For themodel development process to be agile, nimble, and

at the same time coherent with future real deployments, what

is needed is a new class of placement techniques for model

parallelism, that: i) are significantly faster in placement than

learning-based approaches, and yet ii) achieve fast step times

in the placed model.

In this paper we adopt a traditional algorithmic approach
for the placement of ML models on memory-constrained

clusters. Our contributions are:

• We adapt classical literature from parallel job sched-

uling to propose two memory-constrained algorithms,

called m-SCT (memory-constrained Small Communica-
tion Times) and m-ETF (memory-constrained Earliest Task
First).We also presentm-TOPO (memory-constrained TOPO-
logical order), a strawman. We focus on the static version

of the problem.

• We prove that under certain assumptions, m-SCT’s step

time is within a constant factor of the optimal.

• We present the Baechi system (Korean for placement,
pronounced “Bay-Chee”). Baechi incorporates m-SCT/m-

ETF into TensorFlow, and focuses on design decisions

necessary for efficient performance. In spite of apparent

similarities with other techniques, no past work [2, 34,

35] deals with scheduling-related issues like Baechi does.
• We present experimental results from a real deployment

on a small cluster of GPUs, which show that Baechi gen-

erates placement plans in time 654×–206K × faster than

today’s learning-based approaches, and yet the placed

model’s step time is only up to 6.2% higher than expert-

based placements.
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2 NEW ALGORITHMS FOR
MEMORY-CONSTRAINED PLACEMENT

We present the problem formulation and our three placement

techniques. For each technique, we first discuss the classi-

cal approach (not memory-aware), and then our adapted

memory-constrained algorithm. Where applicable, we prove

optimality.

Our three approaches are: 1) a placer based on topological

sorting (TOPO) 2) a placer based on Earliest Task First (ETF),

and 3) a placer based on Small Communication Time (SCT).

2.1 Problem Formulation
Given𝑚 devices (GPUs), each with memory size 𝑀 , and a

Machine Learning (ML) graph 𝐺 that is a DAG (Directed

Acyclic Graph) of operators, the device placement problem

is to place nodes of 𝐺 (operators) on the devices so that the

makespan is minimized. Makespan, equivalent to step time,

is traditionally defined as the total execution time to train

on one input mini-batch (i.e., unit of training data). Table 1

summarizes key terms used throughout the paper. When

discussing classical algorithms, we use the classical terms

“tasks” instead of operators.

If one assumes devices have infinite (sufficient) memory,

scheduling with communication delay is a well-studied theo-

retical problem. The problem is NP-hard even when under

the simplest of assumptions [19], such as infinite number of

devices and unit times for computation and communication.

Out of the three best-performing solutions to the infinite

memory problem, we choose the two that map best to ML

graphs: 1) Earliest Task First or ETF [21, 49], and 2) Small
Communication Time or SCT [17]. SCT is provably close to

optimal when the ratio of maximum communication time

between any two tasks to minimum computation time for

any task is ≤ 1. We excluded a third solution, UET-UCT [37],

since it assumes unit computation and communication times,

but ML graphs have heterogeneous operators.

2.2 m-TOPO: Topological Sort Placer
Background: Topological Sort (NotMemory-Aware). Topo-
logical sort [25] is a linear ordering of vertices in a DAG, such

that for each directed edge 𝑢 → 𝑣 , 𝑢 appears before 𝑣 in the

linear ordering.

New Memory-Constrained Version (m-TOPO). Our mod-

ified version, called m-TOPO, works as follows. It calculates
the maximum load-balanced memory that will be used per

device, by dividing total required memory by number of de-

vices, and then accounting for outlier operators. Concretely,

this per-device cap is 𝐶𝑎𝑝 = (∑𝑖∈[𝑛] 𝑑𝑖/𝑚 + max𝑖∈[𝑛] 𝑑𝑖 ).
Then m-TOPO works iteratively, and assigns operators to

devices in increasing order of device ID. For the current

device, m-TOPO places operators until the device memory

usage reaches 𝐶𝑎𝑝 . At that point, m-TOPO moves on to the

next device ID, and so on. At runtime, m-TOPO executes the

operators at a device in the topologically sorted order.

2.3 m-ETF: Earliest Task First Placer
Background: ETF (Not Memory-Aware). ETF [21] main-

tains two lists: a sorted task list 𝐼 containing unscheduled

tasks, and a device list 𝑃 . In 𝐼 , tasks are sorted by earliest
schedulable time. The earliest schedulable time of task 𝑖 is

the latest finish time of 𝑖’s parents in the DAG, plus time

for their data to reach 𝑖 . In 𝑃 , each device is associated with

its earliest available time, i.e., last finish time of its assigned

tasks (so far).

ETF iteratively: i) places the head of the task queue 𝐼 at that

device from 𝑃 which has the earliest available time, ii) then

updates the earliest available time of that device to be the

completion time of the placed task, and iii) updates earliest

schedulable time of that task’s dependencies in queue 𝐼 (if

applicable).

The earliest schedulable time of task 𝑗 on device 𝑝 is

the later of two times: (i) device 𝑝’s earliest available time

(𝑓 𝑟𝑒𝑒 (𝑝)), and (ii) all predecessor tasks of 𝑗 have completed

and have communicated their data to 𝑗 . More formally, let:

a) Γ− ( 𝑗) be the set of 𝑗 ’s predecessors; b) for 𝑖: start time is

𝑠𝑖 , computation time is 𝑘𝑖 ; c) 𝑥𝑖𝑝 = 0 when task 𝑖 is on device

𝑝 , otherwise 𝑥𝑖𝑝 = 1. Then, the earliest schedulable time of

task 𝑗 across all devices is:

min

𝑝∈𝑃

[
max

(
𝑓 𝑟𝑒𝑒 (𝑝), max

𝑖∈Γ− ( 𝑗)
(𝑠𝑖 + 𝑘𝑖 + 𝑐𝑖 𝑗𝑥𝑖𝑝 )

) ]
. (1)

Under the SCT assumption (Table 1), ETF’s makespan

was shown [21] to have an approximation ratio of (2 + 𝜌 −
1

𝑚
) within optimal, where 𝜌 is the ratio of the maximum

communication time tominimum computation time, and𝑚 is

the number of devices. This approximation ratio approaches

3 when 𝜌 approaches 1 and𝑚 ≫ 1.

New Memory-Constrained Version (m-ETF). Our new

modified algorithm, called m-ETF, maintains a queue 𝑄 of

operator-device pairs (𝑖, 𝑝) for all unscheduled operators

and all devices. Elements (𝑖, 𝑝) in 𝑄 are sorted in increas-

ing order of the earliest schedulable time for operator 𝑖 on

device 𝑝 . This earliest schedulable time takes into account

dependent parents of 𝑖 as well as the earliest time that device

𝑝 is available, given operators already scheduled at 𝑝 . The

reader will notice that m-ETF’s modified queue can also be

used for ETF–the key reason to use (𝑖, 𝑝) pairs is for m-ETF

to do fast searches, since the earliest available device(s) may

have insufficient memory.

m-ETF iteratively looks at the head of the queue. If the

head element (𝑖, 𝑝) is not schedulable because device 𝑝’s
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leftover memory is insufficient, then the head is removed. If

the head is schedulable, then operator 𝑖 is assigned to start

on device 𝑝 at that earliest time, and we: i) update 𝑝’s earliest

available time to be the completion time of 𝑖 , and ii) update

𝑖’s child operators’ earliest schedulable times in queue 𝑄 (if

applicable).

2.4 m-SCT: Small Communication Time
Placer

Background: SCT (NotMemory-Aware). The classical SCT
algorithm [17] first develops a solution assuming an infinite

number of available devices, and then specializes for a finite

number of devices. We elaborate details, as they are relevant

to our memory-constrained version.

Classical SCT: Infinite Number of Devices. SCT uses in-

teger linear programming (ILP). The key idea is to find the

favorite child of a given task 𝑖 , and prioritize its scheduling

on the same device as task 𝑖 . For a task 𝑖 , denote its favorite
child as 𝑓 (𝑖).

The original ILP specification from [17] solves for variables

𝑥𝑖 𝑗 ∈ {0, 1}, where 𝑥𝑖 𝑗 = 0 if and only if 𝑗 is 𝑖’s favorite

child. For completeness, we provide this full ILP specification

below [17] (Section 3.2 in that paper). Below, the machine

learning graph is 𝐺 = (𝑉 , 𝐸); and 𝑖, 𝑗 refer to operators.



min𝑤∞
Minimize makespan.

∀𝑖 → 𝑗 ∈ 𝐸 (𝐺), 𝑥𝑖 𝑗 ∈ {0, 1} 𝑥𝑖 𝑗 = 0 when 𝑗 is 𝑖’s favor-

ite child.

∀𝑖 ∈ 𝑉 (𝐺), 𝑠𝑖 ≥ 0 All tasks start after time=0.

∀𝑖 ∈ 𝑉 (𝐺), 𝑠𝑖 + 𝑘𝑖 ≤ 𝑤∞
All tasks should complete

before makespan.

∀𝑖 → 𝑗 ∈ 𝐸 (𝐺), 𝑠𝑖 + 𝑘𝑖 + 𝑐𝑖 𝑗𝑥𝑖 𝑗 ≤ 𝑠 𝑗 Given edge 𝑖 → 𝑗 , then 𝑗

must start after 𝑖 completes.

If on different devices, com-

munication cost should be

added.

∀𝑖 ∈ 𝑉 (𝐺),
∑

𝑗∈Γ+ (𝑖 )
𝑥𝑖 𝑗 ≥ |Γ+ (𝑖) | − 1

Every task has at most one

favorite child.

∀𝑖 ∈ 𝑉 (𝐺),
∑

𝑗∈Γ− (𝑖 )
𝑥𝑖 𝑗 ≤ |Γ− (𝑖) | − 1

Every task is the favorite

child of at most one pre-

decessor.

(2)

We modify the above as follows. We allow 𝑥𝑖 𝑗 to take any

real value between 0 and 1, thus making the ILP a relaxed

LP. This can be solved in polynomial time using the interior

point method [26]. Then the SCT algorithm simply rounds

the LP solution 𝑥𝑖 𝑗 to be 1 if 𝑥𝑖 𝑗 ≥ 0.1, setting it to 0 otherwise.

𝑥𝑖 𝑗 can be used to determine the favorite child of each task:

𝑗 is 𝑖’s favorite child if and only if after rounding, 𝑥𝑖 𝑗 = 0.

This infinite device algorithm’s makespan was shown [17]

to achieve an approximation ratio
2+2𝜌
2+𝜌 within optimal,

where 𝜌 is the ratio of the maximum communication time

to the minimum computation time.

Figure 1: Classical SCT vs.m-SCT.When per-device mem-
ory is limited to 4 memory units, SCT OOMs but m-SCT suc-
ceeds. m-SCT’s training time (makespan) is only slightly higher
(9) than SCT with infinite memory (8).

We note that the ILP has a meaningful LP relaxation if and

only if: (i) infinite number of devices are available, and (ii) the

SCT assumption is satisfied, i.e., the ratio of the maximum

inter-task communication time to the minimum task com-

putation time is ≤ 1. Nevertheless, even if this assumption

were not true for an ML graph and devices, we show later

that SCT can still be attractive.

Classical SCT: Extension to Finite Number of Devices.
For a finite number of devices, SCT schedules tasks similar

to ETF [21], but: a) prefers placing the favorite child of a task

𝑖 on the same devices as 𝑖 (each task has at most one favorite

child, and at most one favorite parent), and b) prioritizes

urgent tasks, i.e., a task that can begin right away on any

device.

It was proved that SCT’s makespan has an approxima-

tion ratio of ( 4+3𝜌
2+𝜌 − 2+2𝜌

𝑚 (2+𝜌) ) within optimal [17], which is

strictly better than ETF’s (Section 2.3). For instance, when 𝜌

approaches 1 and𝑚 ≫ 1, then SCT is within
7

3
of optimal

while ETF is 3 times worse than optimal.

NewMemory-ConstrainedVersion (m-SCT). Our proposed
memory-constrained algorithm, called m-SCT, works as fol-
lows. First, m-SCT determines scheduling priority and selects

devices in the same way as the finite case SCT algorithm

just described. Second, when a device 𝑝 runs out of available

memory, m-SCT excludes 𝑝 from future operator place-

ments.

In spite of the seemingly small difference, Figure 1 shows

that m-SCT can succeed where SCT fails. SCT achieves a

makespan of 8 time units with infinite memory but OOMs

for finite memory. With finite memory, m-SCT succeeds and

increases makespan to only 9 time units.
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2.5 Optimality Analysis of m-SCT
We now formally prove that m-SCT’s approximation ratio

to optimal is an additive constant away from SCT’s approx-

imation ratio. Since SCT itself was known to be within a

constant factor of optimal [17], our result means that m-SCT

is also within a constant factor of optimal.

Let 𝐾 =
𝑚 ·𝑀∑𝑛
𝑖=1 𝑑𝑖

, where for any operator (task) 𝑖 in 𝐺 , 𝑑𝑖

is the size of memory required by 𝑖 . Intuitively, 𝐾 is the ratio

of the total memory available from all devices to the total

memory required by the model.

Theorem 1. Let the approximation ratio given by the finite
SCT algorithm be 𝛼 , then m-SCT has approximation ratio
≤ 𝛼 + (1 + 2+2𝜌

(2+𝜌) ·𝑚 ) · 1

𝐾−1 .

Proof. Given𝑀 =
𝐾

𝑚

𝑛∑
𝑖=1

𝑑𝑖—from a total of𝑚 devices, at

most
𝑚
𝐾
devices would be full (hence dropped) at any time.

Thus, at least
(𝐾−1) ·𝑚

𝐾
devices are not dropped throughout

the algorithm.

Denote𝑤∞
as the makespan of the infinite SCT algorithm,

and𝑤∞
𝑂𝑃𝑇

as the optimal solution. Let𝑤𝑚
𝑂𝑃𝑇𝑚

and𝑤𝑚
𝑂𝑃𝑇

re-

spectively be the optimal solutions to the 𝑚-device vari-

ant with and without memory constraint. Then we have:

𝑤∞
𝑂𝑃𝑇

≤ 𝑤𝑚
𝑂𝑃𝑇

≤ 𝑤𝑚
𝑂𝑃𝑇𝑚

. Intuitively, this is because as one

goes from left to right in this inequality, one constrains the

problem further.

Since at least
(𝐾−1) ·𝑚

𝐾
devices are always available for

scheduling in𝑚-device m-SCT, the𝑚-device m-SCT algo-

rithm generates amakespan𝑇 ′
at least as good as themakespan

𝑇 generated by running a ( (𝐾−1) ·𝑚
𝐾

)-device finite SCT algo-

rithm.

We also know from [17] that the𝑚-device finite 𝑆𝐶𝑇 algo-

rithm’s makespan𝑤 ≤ 1

𝑚

∑𝑛
𝑖=1 𝑘𝑖 + (1 − 1

𝑚
)𝑤∞

, where 𝑘𝑖 =

task 𝑖’s compute time. Hence, the ( (𝐾−1) ·𝑚
𝐾

)- device finite

𝑆𝐶𝑇 algorithm has makespan 𝑇 such that:

𝑇 ≤ 1

(𝐾−1)𝑚
𝐾

·
𝑛∑
𝑖=1

𝑘𝑖 + (1 − 1

(𝐾−1)𝑚
𝐾

)𝑤∞

≤ 𝐾

𝐾 − 1

𝑤𝑚𝑂𝑃𝑇 + (1 − 𝐾

(𝐾 − 1)𝑚 )𝑤∞.

(3)

The second inequality arises as

∑
𝑖 𝑘𝑖 ≤ 𝑚 · 𝑤∞

𝑂𝑃𝑇
, since

the device that finishes last needs at least
1

𝑚

∑
𝑖 𝑘𝑖 time. The

approximation ratio of𝑚-device finite SCT algorithm is: 𝛼 =

1 + (1 − 1

𝑚
)𝛽 , where 𝛽 =

2+2𝜌
2+𝜌 [17]. The makespan 𝑇 ′

of

Figure 2: Working Example. ML Graph for Linear Regres-
sion.

𝑚-device m-SCT is bounded as:

𝑇 ′ ≤ 𝑇 ≤
( 𝐾

𝐾 − 1

+ (1 − 𝐾

(𝐾 − 1)𝑚 )𝛽
)
𝑤𝑚𝑂𝑃𝑇𝑚

≤
(

1

𝐾 − 1

+ 𝛽

(𝐾 − 1)𝑚 + 1 + (1 − 1

𝑚
)𝛽
)
𝑤𝑚𝑂𝑃𝑇𝑚 .

(4)

Thusm-SCT has an approximation ratio 𝛼 + (1+ 2+2𝜌
(2+𝜌) ·𝑚 ) ·

1

𝐾−1 . □

Corollary 1.1. m-SCT has an approximation ratio
(
𝐾
𝐾−1 +

(1− 𝐾
(𝐾−1)𝑚 ) 2+2𝜌

(2+𝜌)

)
with respect to optimal.When 𝜌 approaches

1, and 𝑚 ≫ 1, then the approximation ratio of m-SCT ap-
proaches ( 7

3
+ 1

𝐾−1 ).

3 BAECHI DESIGN
Our Baechi system has to tackle several challenges in order

to incorporate the three placement algorithms just described.

For concreteness, we built Baechi to work modularly with

TensorFlow [1]. Baechi’s challenges are: 1) Satisfying Tensor-

Flow’s colocation constraints, 2) Minimizing Data Transfer

via Co-Placement, 3) Optimizations to reduce the number of

operators to be placed, and 4) Accommodating Sequential

and Parallel Communications. Baechi solves these using a

mix of both new ideas (Sections 3.1,3.3,3.4) and ideas similar

to past work (Sections 3.2,3.3).

Working Example. We use Figure 2 as a working exam-

ple throughout this section. It is a simplified TensorFlow

graph for linear regression training with stochastic gradient

descent (SGD).

3.1 TensorFlow Colocation Constraints
The first challenge arises from the fact that TensorFlow (TF)

requires certain operators to be colocated. For instance, Ten-

sorFlow offers a variable operator, tf.Variable, which is
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Figure 3: Co-Placement. Subgraph of tf.tensordot Gen-
erating Data Transfers by m-ETF.

used to store persistent state such as an ML model param-

eter. The assignment and read operators of a variable are

implemented as separate operators in TensorFlow, but need

to be placed on the same device as the variable operator.

TensorFlow represents this placement requirement as a colo-
cation group involving all these operators. E.g., in Figure 2

there are two colocation groups: one containing Weight and

ApplyGrad, and another containing Step and UpdateStep.
Baechi’s initial placement (using the algorithms of Sec-

tion 2) ignores colocation requirements. Our first attempt

was to post-adjust placement, i.e., to “adjust” the device place-
ment, which was generated ignoring colocation, by “mov-

ing” operators from one device to another, in order to sat-

isfy TF’s colocation constraints. We explored multiple post-

adjustment approaches including: i) preferring the device on

which the compute-dominant operator in the group is placed,

ii) preferring the device on which the memory-dominant op-

erator in the group is placed, and iii) preferring the device

on which a majority of operators in the group are placed.

We found all these three approaches produced inconsistent

performance gains, some giving step times up to 406% worse

than the expert. We concluded that post-adjusting was not a

feasible design pathway.

Baechi’s novel contribution is to co-adjust placement, us-
ing colocation constraint-based grouping while creating the

schedule. (In comparison, e.g., ColocRL [35] groups before
placement.) Concretely, whenever Baechi places the first
operator from a given colocation group, all other operators

in that group are immediately placed on that same device.

Baechi tracks the available memory on each device given

its assigned operators. If the device cannot hold the entire

colocation group, then Baechi moves to the algorithm’s next

device choice. We found this approach the most effective in

practice, and it is thus the default setting in Baechi.

3.2 Co-Placement Optimization
Different from TensorFlow’s colocation constraints (Sec-

tion 3.1), Baechi further prefers to do co-placement of certain
operators. This is aimed at minimizing data transfer over-

heads. Common instances include: (i) groups of communi-

cating operators whose computation times are much shorter

Figure 4: Operator Fusion. Fused ML Graph Example.

than their communication times, and (ii) matched forward

and backward (gradient-calculating) operators.

Figure 3 shows an example for case (i). This subgraph

generated by tf.tensordot API is a frequent pattern occur-

ring inside TensorFlow graphs. The subgraph permutes the

dimensions of opin output according to the perm’s output
(Transpose) and then changes the tensor shape by Shape’s
output (Reshape).
When m-ETF places this subgraph on a cluster of 3 de-

vices, it places opin, perm, and Shape on different devices.

Computation costs for perm and Shape are very short (be-

cause they process predefined values), whereas subsequent

communication times are much larger. Thus, m-ETF’s initial

placement results in a high execution time.

Baechi’s co-placement heuristic works as follows. If the

output of an operator is only used by its next operator, we

place both operators on the same device. This is akin to

similar heuristics used in ColocRL [35]. In Figure 3, Baechi’s

co-placement optimization places all of the operators on one

device, avoiding any data transfers among the operators.

For case (ii), to calculate gradients in the ML model, Ten-

sorFlow generates a backward operator for each forward

operator. Baechi co-places each backward operator on the

same device as its respectively-matched forward operator.

Upon placing the first operator in a colocation group,

Baechi uses both the co-placement heuristic and the colo-

cation constraints (Section 3.1) to determine which other

operators to also place on the same device. Co-placement not

only minimizes communication overheads but also speeds up

the placement time by reducing the overhead of calculating

schedulable times on devices.

3.3 Operator Count Minimization
Placement time can be decreased by reducing the number of

operators/groups to be placed. We do this via two additional

methods:
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(a) (b) (c) (d) (e)

Figure 5: Operator Fusion Without Creating Cycles. When 𝑜𝑝𝑠𝑟𝑐 and 𝑜𝑝𝑑𝑠𝑡 are fused, some scenarios create a cycle (a),
while others do not (b, c, d, e). Baechi fuses operators in a subset of “safe” cases, particularly (d, e).

i) Operator Fusion: Fusing operators that are directly con-

nected and in the same co-placement group; and

ii) Forward-Operator-Based Placement: Placing operators by
only considering the forward operators.

Operator Fusion. Baechi fuses operators using either the

colocation constraints (Section 3.1) or co-placement opti-

mizations (Section 3.2). This is new and different from Ten-

sorFlow’s fusion of operations. One challenge that appears
here is that this may introduce cycles in the graph, violating

the DAG required by our algorithms.

Figure 4 shows an example resulting from Figure 2—a

cycle is created when Step and UpdateStep are fused into a

new meta-operator, and Weight and ApplyGrad are fused.
Consider two nodes–source and destination–with an edge

from source to destination. Merging source and destination

creates a cycle if and only if there is at least one additional
path from source to destination, other than the direct edge.

Note that there cannot be a reverse destination to source

path as this means the original graph would have had a

cycle. In Figure 5a, fusing opsrc and opdst creates a cycle.

Unfortunately, we found that pre-checking existence of such

additional paths before fusing two operators is unscalable,

because the model graph is massive.

Instead, Baechi realizes that a necessary condition for an

additional path to exist is that the source has an out-degree

at least 2 and the destination has an in-degree at least 2

(otherwise there wouldn’t be additional paths). Thus Baechi

uses a conservative approach wherein it fuses two operators

only if the negation is true, i.e., either the source has an out-

degree of at most 1, or the destination has an in-degree of at

most 1 (Figures 5d, 5e). This fusion rule misses a few fusions

(Figures 5b, 5c) but it catches common patterns we observed,

like Figure 5d.

Forward-Operator-Based Placement. When memory is

sufficient (i.e., one device could run the entire model), Baechi

considers only forward operators for placement and there-

after co-places each corresponding backward (gradient) op-

erators on the same respective device as their forward coun-

terparts. This is a commonly-used technique [2, 35]. This

(a) (b)

Figure 6: Operator Fusion. Avoiding Data Transfer Exam-
ple. (a) Before Fusion. (b) After Fusion.

significantly cuts placement time. When device memory is

insufficient, Baechi runs the placement algorithms using

both forward and backward operators, forcing correspond-

ing pairs to be co-placed using the heuristic of Section 3.2.

Example: Benefits of Fusion. Figure 6a shows the place-

ment of a subgraph of Figure 2 on two devices. Baechi first

places Grad on device-1. Baechi places the next operator,
Step on the idle device-2, and colocates (due to TF con-

straints) UpdateStep on device-2. This creates commu-

nication between the devices. Assuming operators’ com-

pute costs are 1, and communication cost between Grad and

UpdateStep is 5, this results in an execution time of 7 time

units.

On the other hand, Figure 6b shows that Baechi merges

Step and UpdateStep with operator fusion. Since this meta-

operator’s schedulable time on device-1 is earlier than on

device-2 due to communication overhead, Baechi places it

on device-1. Fusion lowers total execution time to 3 time

units.

Loops in the Original Model Graph. Different from the

cycles discussed above, some network graphs consist of loops,

e.g., RNNs. We use the unrolled ML graph [3] to turn the

graph into a DAG, and then apply Baechi’s techniques.



SoCC ’20, October 19–21, 2020, Virtual Event, USA Jeon et al.

Figure 7: Baechi Input and Output.

3.4 Sequential vs. Parallel Communication
Our algorithms from Sections 2.3 and 2.4 assume that each

operator can send data simultaneously to its children. Baechi

also proposes a new way to deal with environments involv-

ing constrained networks (including our deployment in Sec-

tion 5), where data transfer is sequential. For networks that

limit each device to do at most one transfer at a time (out

or in), Baechi assumes communication queues at devices.

Concretely, when a data transfer between two devices is re-

quested, Baechi assumes the request is put into the respective

devices’ communication queues and processed sequentially

at both ends. During placement, Baechi calculates the wait

time at the communication queues and adds it to the earli-

est schedulable time computed for the operator. Specifically

the queue wait time is added to equation (1) in Section 2.3.

Otherwise, normal m-SCT/m-ETF apply, as described earlier.

4 IMPLEMENTATION
In order to integrate modularly with TensorFlow (TF) [1]

v1.12, Baechi adopts the workflow shown in Figure 7. Baechi

executes the following steps: 1) its Graph Generator takes
as input a TF graph containing operators, 2) Baechi’s Graph
Optimizer uses the design of Section 3 to account for TF

colocation constraints, and applies co-placement and opera-

tor fusion, 3) Baechi’s Execution Simulator (ES) executes our
placement algorithms (m-TOPO, m-ETF, or m-SCT), and 4)

finally Baechi outputs a TF graph with operators assigned

to devices. This output graph is fed to TF runtime.

4.1 Graph Generator and Graph Optimizer
Baechi parses the input TF graph and generates an equivalent

NetworkX [40] graph. The NetworkX format allows Baechi

to both store operator execution metadata (computation and

communication times, memory needed, etc.), and to easily

manipulate the graph (e.g., fuse operators).

Baechi uses the standard TensorFlow profiling tool to ob-

tain computation time andmemory allocation for each opera-

tor. TF profiler returns allocation information for temporary,

persistent, and output tensor memory. The temporary mem-

ory is allocated at the beginning of an operation and deallo-

cated when the operation finishes. The persistent memory

is allocated and used over the entire execution, e.g., to store

persistent states such as weights.

For communication time, we use a linear model propor-

tional to data size. We implemented a microbenchmark tool

atop TensorFlow to measure communication times for vari-

ous data sizes, and generated a communication cost function

through the linear regression.

Then Baechi applies the co-placement optimizations (Sec-

tion 3.2), and optimizations like operator fusion (Section 3.3)

on the graph.

4.2 Execution Simulator
Baechi’s Execution Simulator (ES) takes as input the operator

graph from the Graph Optimizer and outputs the TensorFlow

graph in which all operators are assigned to devices. Our first

attempt was in fact to try repurposing TensorFlow’s simula-

tor, but it assumed operators were already placed, assumed

zero communication cost, and ignored caching. This moti-

vated the design of Baechi’s new ES uniquely for memory-

constrained placement.

The ES consists of: a) a global scheduler, and b) simulated

devices (with specs identical to deployment). The global

scheduler maintains a single queue with operators that are

ready to run. The scheduler extracts operators from its queue

and applies our scheduling algorithms (m-TOPO, m-ETF, m-

SCT) to place them on devices.

In ES, each device has two FIFO queues, one for operators

and one for data transfer. This allows data transfer to overlap

with operator execution. When a device receives a tensor

from another device, it caches the tensor to avoid duplicate

data transfer.

DynamicMemoryAllocation. Calculating a device’s mem-

ory usage as the sum total of all its assigned operators results

in an over-estimate. For example, Inception-V3 with batch

size 32 can execute using 4 GB even though its operators’

memory needs add up to 22 GB.

Baechi’s ES tracks an estimate of memory usage during

its placement. When an operator executes on a device, the

device allocates temporary memory, and separate memory

for its output tensors. The temporary memory is deallocated

when the operator finishes. The output tensor memory is

deallocated after all its successors finishes except the persis-

tent memory of the operator. If a device’s memory becomes

full, the device can be removed–this never happens in prac-

tice as usually a device has at least a few bytes left. This

loosely parallels the way in which TF manages memory.

Baechi reserves memory for a colocation group at device

𝑝 when the first operator is placed on 𝑝 (Section 3.1). The
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reserved memory is deallocated when all the operators in

the group finish.

Linear Programming Solver. To solve the SCT LP prob-

lem, we use the interior point method. This is preferable

over other solvers such as simplex [7] as it guarantees poly-

nomial execution time [48]. Concretely, we use the primal

dual interior-point solver via Mosek optimization [5], which

has a run time complexity of 𝑂 (𝑛3.5𝐿), where 𝐿 is the maxi-

mum number of bits in the LP input, and 𝑛 is the number of

variables.

4.3 Miscellaneous Issues
We discuss a few key miscellaneous aspects.

LP Modifications. The ILP solutions (Section 2.4) resulted

in more than one favorite child (or parent) being selected for

certain nodes. In Baechi we lowered the rounding threshold

from 0.5 to below 0.2. This eliminated all violations, and

avoided nodes from having multiple favorite children. (We

use threshold = 0.1 in practice.)

Ignoring Bootstrap Steps in Profiling. 1) In a training

run of a model graph, step times are initially high due to

TF bootstrapping. We estimate step times in steady state,

after a few iterations have passed. 2) Some TF operators are

implemented with multiple GPU kernels. When profiling

these operators, we include multiple kernel executions, in

order to avoid underestimation. This is similar to TF’s cost

model [1].

5 EVALUATION
Our evaluation answers the following five questions:

1. How fast is Baechi’s placement time, i.e., how quickly do

our algorithms find placements? (Section 5.2)

2. How fast are the step times of the placement generated

by Baechi, i.e., training time per step of the placed model?

(Section 5.3)

3. How do the Baechi’s step times change when there is

insufficient memory per GPU? (Section 5.4)

4. How do the step times for Baechi compare to single GPU
and expert placements? (Section 5.3)

5. How much is the benefit due to Baechi’s optimizations
from Sections 3.2 and 3.3? (Section 5.5)

5.1 Experimental Settings
Weuse two popularML benchmarks: Inception-V3 andGoogle

Neural Machine Translation System (GNMT). These two

models were chosen because: i) they are respectively consid-

ered the best representatives of vision and Natural Language

Processing (NLP) models, and ii) Past work [2, 34, 35] used

Inception-V3 and NMT (GNMT is a more complex version),

thus allowing us to compare.

Benchmark: Inception-V3. Inception-V3 [44] is a convo-

lutional neural network architecture that is widely used for

image classification. This model is composed of multiple

blocks called Inception modules. The Inception modules con-

sist of branches of convolutional and pooling operators. To

train the model, we use RMSProp [18] and batch sizes of

both 32 and 64.

Benchmark: GNMT. Google Neural Machine Translation

System (GNMT) [52] is a language model for automated

translation. GNMT consists of: encoder and decoder modules,

each a stack of recurrent neural networks (RNNs); and the

attention module to process long sequences effectively. We

use 4 long short-term memory (LSTM) layers of the encoder

and the decoder layers with residual connections, and the

Bahdanau attentionmechanism [6].We use the LSTM hidden

size of 512, the vocabulary size of 30,000, the unrolled RNNs

with the sequence length of 40 and 50, and the batch size of

128 and 256. Baechi applies the co-placement optimization

to LSTM cell operators and also to attention operators.

Compared to Inception-V3, GNMThas fewer barriers (sync

points) inside its model graph, indicating that GNMT has a

higher potential to benefit from Baechi’s parallel placements.

Machine Setup. All experiments are run on our local server

that has 4 NVIDIAGTX 2080 GPUs, with 8 GB per-GPUmem-

ory (the machine also has an Intel i9-7960X CPU, but this is

not used to execute operators). GPUs are connected to CPUs

via PCIe 3.0 x16 (we do not use NVLink [38]). All data trans-

fers go through the host memory (no P2P communication

among GPUs). This results in a slow IO bus, and we believe

this high ratio of communication overhead to computation

overhead is representative of realistic scenarios like the kinds

outlined in Section 1.

To generate operator execution information, we sample

5 TensorFlow profiling runs after 5 warm-up training steps.

We average these to generate compute costs. We place all

GPU-supported operators only on GPUs.

Approach to Comparison. To compare Baechi, we extract

the best performing numbers from each of the three previous

works [2, 34, 35]. Directly running these other systems was

complicated by lack of uniform availability of working code—

Placeto’s code [2] missed key optimizations; ColocRL [35] is

proprietary; only HierarchicalRL’s code [34] was available,

but it was slow and generated inefficient placements. E.g.,

For GNMT, HierarchicalRL took 12 hours+ to run placement

(batch size 128, length 50) and the resultant step time was

much higher than expert’s, contrary to HierarchicalRL pa-

per’s claims. Essentially, direct comparison would be unfair

to these other papers without knowing the exact hyperpa-

rameters they used to achieve their “best” performance. In

light of this, our comparison gives the benefit of doubt to,
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Table 2: Placement Time. Time to Generate a Placement
for our target machine with 4 GPUs.

Model HierarchicalRL [34] Placeto [2] Baechi (m-SCT)

Inception-V3 11 hrs 50 mins 1 hr 49 mins 1-10 seconds

NMT (GNMT) 1 day 21 hrs 14 mins 2 days 20 hrs 40 mins 1.2-48 seconds

and uses the best performance from, these learning-based

placement papers. All the above papers compared step times

to experts, and we do too.

5.2 Placement Time
Table 2 shows both: 1) measured placement times of Baechi,

and 2) calculated placement times for two learning-based

techniques, namely: HierarchicalRL [34] and Placeto [2].

The numbers for HierarchicalRL and Placeto are normal-

ized quantities, both derived from numbers reported in Ad-

danki et al. [2]. For these two systems, wemultiply the fastest

step time among its reported placements, by the number of

placement samples
1
. For instance, HierarchicalRL’s [34]

Inception-V3 placement training time is derived as a product

of the reported final step time (1.19 s) and the number of

samples (35,800), giving 42,602 s, or 11 hrs 50 mins.

Hence, the numbers for these learning-based placers are

their best-case performance. In comparison, we use theworst-

case placement times from Baechi, specifically from m-SCT

which took the longest to generate a placement. Note that

all times in Table 2 exclude time to profile the graph, as

profiling is a common baseline encountered by all the three

approaches shown. We find the profiling time to be low,

about 10–12 s total for Inception-V3 and GNMT. This breaks

down as 2-4 s for warmup execution, 1–3 s for graph execu-

tion for profiles, and less an 1 s for parsing profile results.

Table 2 shows that Baechi places ML models orders of

magnitude faster than the learning-based approaches. For

Inception-V3, Baechi reduces placement time, from 1.8–11.8

hours, to under 10 s. Thus Baechi is 654×–42.6K× faster at

placing Inception-V3. For GNMT, Baechi reduces placement

time from several days to under 48 s. Thus Baechi is 3392×–
206K× faster at placing GNMT.

Overall, Baechi is 654×–206K× faster at placement com-

pared to today’s learning-based approaches [2, 34].

5.3 Placement with Sufficient Memory
We next evaluate the effectiveness of the generated place-

ment by measuring the step time of the placed model, i.e., its

time to execute 1 training step on an input data batch. We

first explore the scenario when each GPU has sufficient mem-

ory to run the entire model. We compare against both: i) step

1
Even if one were to parallelize the learning-based placers, their resource

usage would be similar to the normalized time metric we show.

time on a single GPU, which might be fast because it avoids

the overheads of communication, and ii) an expert-based
placement scheme for placement on multiple GPUs.

The expert is a manual process and we do it as follows. For

GNMT, we use the technique of Wu et al. [52]. Each LSTM

layer in the encoder and decoder modules are placed on

different GPUs. The embedding layer is placed on the same

GPU as the first LSTM layer. The output projection layer is

placed on the same GPU as the last decoder LSTM layer. For

Inception-V3, the expert is the single GPU placement, similar

to HierarchicalRL [34].

m-ETF, m-SCT –VS.– Single GPU, Expert. Table 3 shows
the step times for the three algorithms in Baechi–namely

m-TOPO, m-ETF, and m-SCT—as well as the single GPU and

expert.We show numbers for 2 batch sizes in eachmodel, and

2 sequence lengths in GNMT. We observe that for Inception-

V3: 1) m-ETF and m-SCT find the same device placements

as the expert, i.e., place all operators in a single GPU, and 2)

m-TOPO has 6.1–6.3% higher step time than the expert. This

occurs because m-TOPO splits the neural network between

the Inception blocks, and hence the next inception block(s)

are unable to run until the previous block(s) finish.

In GNMT, first, compared to single GPU placement, m-

ETF’s placements have step times that are 12.1–33.9% faster.

The step time speedups for m-SCT over single GPU are be-

tween 18.4–28.5%. These observations show that Baechi’s

m-ETF and m-SCT are able to extract benefits of parallelism

in spite of communication overheads.

Second, in GNMT, compared to the expert, m-ETF is be-

tween 4.5% slower and 6.2% faster in step times. Compared

to the expert, m-SCT is between 6.2% slower and 1.9% faster.

These observations show that Baechi’s m-ETF and m-SCT

are able to generate placements with step times in the same

ballpark as the expert, while taking significantly less time

to create a placement than the manual expert which takes

minutes to hours.

m-TOPO. Baechi’s m-TOPO is significantly slower than m-

ETF and m-SCT. m-TOPO’s step times are 5.8%–26.4% slower

than m-ETF and 5.8%–23.3% slower than m-SCT. After a

deep dive into m-TOPO we found that it places most of the

encoder’s LSTM layers at the first two GPUs, and most of the

decoder LSTM layers at the other two GPUs. However, this

parallelization is offset negatively by the high data transfers

between the kernel weight and the LSTM cell operators for

LSTM layers.

m-SCT vs. m-ETF. Our theoretical analysis in Section 2.5

predicts m-SCT beating m-ETF. In practice, m-ETF’s step

times are faster than m-SCT’s for three out of 4 settings in

GNMT (it is faster only under sequence length 40, batch size

128).
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Table 3: Baechi with Sufficient Memory. Average Step Times (Training) in seconds of Placed Model Graphs, and Speedup over
Single GPU and Expert Placements. 4 GPUs (unless otherwise mentioned).

Speedup over

Single GPU Expert (4 GPUs)

Model Batch Size

Single

GPU Expert m-TOPO m-ETF m-SCT m-ETF m-SCT m-ETF m-SCT

Inception-V3

32 0.269 0.269 0.286 0.269 0.269 0.00% (1 GPU Expert)

64 0.491 0.491 0.521 0.491 0.491 0.00% (1 GPU Expert)

GNMT

(length: 40)

128 0.251 0.214 0.265 0.224 0.212 12.1% 18.4% -4.5% 0.9%

256 0.474 0.376 0.481 0.354 0.369 33.9% 28.5% 6.2% 1.9%

GNMT

(length: 50)

128 0.319 0.259 0.348 0.264 0.267 20.9% 19.5% -1.9% -3.0%

256 0.618 0.484 0.609 0.502 0.516 23.1% 19.8% -3.6% -6.2%

Figure 8: Baechi Sensitivity to Profiling Errors
(GNMT). X-axis shows perturbation multiplied into profile.

This practical suboptimal behavior of m-SCT is because

of two reasons. First, SCT’s optimality proof relies on the

assumption that the minimum operator computation time is

larger than or equal to the maximum communication time.

This does not hold in our experimental machine—a 4 B GPU-

GPU transfer takes 50–200 ms while many operators execute

within 1 ms, and 67% of Inception-V3’s operators take under

50 ms. Second, the m-SCT LP model (Section 2.4) assumes

parallel data transfers from an operator to all its children.

Our experimental machine only allows sequential transfers

(Section 3.4)
2
. Overall, m-SCT and m-ETF are comparable in

practice, with m-ETF having a slight edge in both placement

time and step time.

Profile Sensitivity. To measure Baechi’s sensitivity to pro-

filing errors, we perform runs where in each run we multiply

the computation and communication profiles by a perturba-

tion factor. Figure 8 shows that: (i) both m-SCT and m-ETF

are largely insensitive to profiling errors—step times do not

deviate much up to 20% profile error, and from 20%-80% pro-

file error step times deviate only up to 30%; (ii) m-ETF is

2
Faster data transfers between GPUs, e.g., via NVLink [38], have the poten-

tial to make m-SCT more competitive than m-ETF, but this is outside our

scope.

Table 4: Baechi with Insufficient Memory. Average Step
Times (Training) in seconds of Placed Model Graphs (Paren-
theses show Slowdown compared to Sufficient Memory).

Model

Single

GPU Expert m-TOPO m-ETF m-SCT

Inception-V3 OOM OOM

0.690

(58.6%)

0.312

(13.8%)

0.292

(7.9%)

GNMT OOM

0.221

(3.2%)

0.272

(2.6%)

0.230

(2.6%)

0.212

(0.0%)

less sensitive than m-SCT; and (iii) higher batch sizes (256

vs. 128) imply lower sensitivity. We explain the reasons be-

hind observations (ii) and (iii) as follows. Observation (ii)

occurs because m-ETF’s heuristic is less sensitive to profile

errors than m-SCT’s favorite child selection—all else being

equal, increasing profile perturbation affects m-ETF later

than m-SCT. Observation (iii) is because increasing batch

sizes increases tensor sizes. Consequently, communication

times rise much faster relative to computation time increase.

This raises wait times for tensor arrival during execution,

and this wait time intuitively acts as a buffer that reduces

the effect of profiling errors.

5.4 Placement with Insufficient Memory
Next, we limit per-GPU memory to 30% of total available

memory, i.e., from 8 GB down to 2.4 GB. Table 4 shows results

for Inception-V3 with batch size of 32, and GNMTwith batch

size of 128 and sequence length 40.

A few notes on configuration changes in the experiments.

For GNMT, co-placement (Section 3.2) remains enabled and

we use the same configuration as Section 5.3. For Inception-

V3, we disable co-placement as otherwise it generated a

massive operator group, causing an Out of Memory error
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Figure 9: Baechi Load Balance of Memory Usage.
Dashed line is memory limit for each GPU (normalized).

(OOM). Disabling co-placement increases the number of op-

erators to be placed from 2,620 to 7,077, and placement time

from 1 s to 10.3 s.

Effect on Step Time. Table 4 shows that the single GPU

placer always suffers an OOM (Out of Memory) error. The ex-

pert placer OOMs for Inception-V3, but succeeds for GNMT.

In comparison, all three variants of Baechi succeed in placing

under insufficient memory (m-TOPO, m-ETF, m-SCT).

For Inception-V3, only Baechi succeeds in placement. m-

ETF and m-SCT provide step times that are only 13.8% and

7.9%worse respectively than the sufficient memory cases (i.e.,

Table 3). m-TOPO degrades by 58.6% because of its disabled

co-placement, which ballooned communication along the

graph’s critical path.

For GNMT, the overheads of all three Baechi algorithms

and the expert are small, making them comparable to the

sufficient memory numbers.

Load Distribution. Figure 9 shows the peak memory usage,

normalized to the memory limit for each GPU (insufficient

memory case). For Inception-V3, with a 30% memory cap, a

single GPU does not suffice, and that m-SCT relies on a mix

of multiple GPUs. In particular, 2 of the 4 GPUs appear to be

used more. This is because Inception-V3 has more barriers

(sync points) than GNMT, limiting Inception-V3’s ability to

parallelize effectively.

For GNMT, Baechi’s m-SCT is able to more evenly load

balance (than Inception-V3) across the 4 GPUs, even when

memory is sufficient. In fact, we found that m-SCT generates

an identical placement in both cases with sufficient and with

insufficient memory.While this fact is also true for the expert,

m-TOPO, and m-ETF, their step times are 2.6–3.2% higher

than the sufficient memory cases (Table 3). This slowdown

is because of TensorFlow runtime memory optimizations.

When the memory usage approaches its limit, the Tensor-

Flow runtime resorts to certain memory optimizations to

decrease peak memory usage. For the expert placement, peak

Table 5: Benefits of Baechi Optimizations. Number of
Operators to be Placed, Placement Times in seconds, and Aver-
age Step Times in seconds. m-SCT.

Model

Un-Optimized Optimized

Num.

Ops

Placement

(seconds)

Step

(seconds)

Num.

Ops

Placement

(seconds)

Step

(seconds)

Inception-V3 6884 68.0 0.302 17 0.9 0.269

GNMT

(length: 40)
18050 275.1 0.580 542 1.2 0.212

GNMT

(length: 50)
22340 406.1 0.793 706 2.4 0.267

memory usage for one GPU device decreases from 2 GB (83%

of the memory limit) to 1.45 GB and thus the number of

memory operations increases 6% under insufficient mem-

ory. These memory optimizations do not kick in for m-SCT,

making it faster than the expert.

5.5 Benefit of Baechi Optimizations
Table 5 shows the benefit from the combined optimizations

of Section 3.2 and 3.3. Inception-V3 with batch size 32 and

GNMT with batch size of 128 are used. We use the m-SCT

variant of Baechi. The experimental setup has 4 GPUs with

sufficient memory.

Overall, we observe that Baechi’s combined optimizations

achieve 75.6×–229.3× speedup in placement times, and 1.1×–
3.0× speedup in step times. We discuss a few interesting

aspects. Operator fusion (Section 3.3) reduces both number of

operators to be placed and thus also placement time. Forward-

operator-based placement (Section 3.3) significantly speeds

up placement. Concretely the latter optimization reduces the

number of operators to be placed 2.7× for Inception-V3 and

6.5×–7.0× for GNMT. This accelerates the placement times

13.7× for Inception-V3 and 20.2×–31.4× for GNMT.

Co-placement (Section 3.2) is efficient because it clusters

operators. This reduces step times. While co-placement does

not change the operator count to be placed, it decreases place-

ment time by reducing the overhead of calculating schedula-

ble times.

6 RELATEDWORK
Data Parallelism. Data parallelism refers to training the

samemodel replicas withmultiple partitioned data in parallel.

This is motivated by increasing sizes of datasets. MALT [31]

is a fault-tolerant, network-cost effective solution for data

parallel ML. Another common data parallelism framework is

NESL [8], a first-order functional language that enables de-

velopers to put irregular-parallel program in parallel devices.

OptiML [43] is a domain-specific language (DSL). Most major

ML frameworks offer support for data parallelism [1, 11, 39].
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Model Parallelism. Compared to data parallelism, rela-

tively fewer solutions exist for model parallelism. DistBe-

lief [14] and STRADS [27] require the user to manually spec-

ify device placement, while the systems in [29, 30] do not

generalize to arbitrary ML models.

As discussed in Section 1, reinforcement-learning based

approaches have been popular lately to perform placement

for model parallelism, including work from Google [34, 35]

and the Placeto system [2]. ColocRL [35] trains a sequence-

to-sequence model by RL to generate placements of man-

ually grouped subsets of TensorFlow operators. Hierarchi-

calRL [34] substitutes the human intervention for grouping

operators with an ML model and jointly trains the ML mod-

els for operator grouping and device placements. Placeto [2]

proposes an approach that transfers learned device place-

ment models to newMLmodels in order to minimize training

times for the new model placements.

Classical Parallel Scheduling. Classical parallel schedul-
ing, e.g., ETF [21] and SCT [17], has been widely used in task

scheduling on multiple computers. ETF and SCT are used as

baselines bymany subsequentworks [15, 20, 36, 49, 54]. None

of these address memory constraints and a finite number

of devices. For instance, Eyraud-Dubois et al. [15] investi-

gate the execution of tree-shaped task graphs using multiple

processors, but without always obeying memory restrictions.

TensorFlowGraphOptimizations. Existing techniques [45,
46] work only after the graph has been placed—e.g., to im-

prove operations’ performance—and thus are inapplicable.

E.g., Running Grappler (TensorFlow’s graph optimizer) gen-

erates an optimized graph protobuf, but it is unusable as it

lacks certain metadata. Baechi’s targeted problem is harder

as we have to both optimize the graph and do placement.

7 CONCLUSIONS
Summary. Wehave proposed algorithmic solutions tomodel

parallelism, useful in scenarios where devices are memory-

constrained or neural networks are massive. Among our

three algorithms (m-ETF, m-TOPO, m-SCT), the m-SCT al-

gorithm is provably within a constant factor of the optimal

achievable training time. We have implemented these al-

gorithms into our new Baechi system, which can be used

alongside TensorFlow.

Experimental results on a 4 GPU setup showed our ap-

proaches reduce placement time by a factor of between 654×–
206000× compared to today’s state-of-the-art placement ap-

proaches which are learning-based, while increasing step

time (makespan) by only up to 6.2% compared to expert plac-

ers. When memory is constrained further, while single GPU

and expert placers suffer OOM errors, Baechi’s algorithms,

especially m-SCT and m-ETF, were able to place success-

fully while suffering only up to a 13.8% increase in step time

compared to sufficient memory. Baechi’s optimizations help

reduce placement time by 75.6×–229.3×, and step time by

1.1×–3.0×. We also conclude that m-SCT and m-ETF per-

form comparably, with m-ETF having a slight edge for slower

networks.

Retrospective. When we first implemented m-ETF and m-

SCT, the placed models had very high step times because

communication-intensive operators violated the SCT assump-

tion (Table 1). We whittled away at this with a persistent

effort at systems design and optimizations (outlined in Sec-

tion 3), which played a major role in bringing the step times

down. Although our exploration was efficient and we cycled

new techniques and optimizations on a weekly basis, it took

1 man-year of effort to converge to what now appears in this

paper. This is indicative of the difficulties associated with

implementing scheduling algorithms on today’s open-source

ML systems (and in a sense shows why existing learning-

based approaches are so attractive!). Nevertheless, our results

show that the benefits of algorithmic design are worth our

exploratory pain.

We believe that our work opens up a new direction for

solid algorithmic exploration in the problem of model par-

allelism, with the promise of speed, generalizability, pre-

dictability, and analyzability. For instance, federating learn-

ing introduces the need to solve the dynamic version of the

memory-constrained problem, where devices continuously

join, leave, and fail.

Code. Baechi’s code is openly available at the following link:
http://dprg.cs.uiuc.edu/downloads.php
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