ELASTICITY AND RESOURCE AWARE SCHEDULING IN DISTRIBUTED DATA STREAM PROCESSING SYSTEMS

BY

BOYANG PENG

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Adviser:

Professor Indranil Gupta
ABSTRACT

The era of big data has led to the emergence of new systems for real-time distributed stream processing, e.g., Apache Storm is one of the most popular stream processing systems in industry today. However, Storm, like many other stream processing systems, lacks many important and desired features. One important feature is elasticity with clusters running Storm, i.e. change the cluster size on demand. Since the current Storm scheduler uses a naïve round robin approach in scheduling applications, another important feature is for Storm to have an intelligent scheduler that efficiently uses the underlying hardware by taking into account resource demand and resource availability when performing a scheduling. Both are important features that can make Storm a more robust and efficient system. Even though our target system is Storm, the techniques we have developed can be used in other similar stream processing systems.

We have created a system called Stela that we implemented in Storm, which can perform on-demand scale-out and scale-in operations in distributed processing systems. Stela is minimally intrusive and disruptive for running jobs. Stela maximizes performance improvement for scale-out operations and minimally decrease performance for scale-in operations while not changing existing scheduling of jobs. Stela was developed in partnership with another Master’s Student, Le Xu [1].

We have created a system called R-Storm that does intelligent resource aware scheduling within Storm. The default round-robin scheduling mechanism currently deployed in Storm disregards resource demands and availability, and can therefore be very inefficient at times. R-Storm is designed to maximize resource utilization while minimizing network latency. When scheduling tasks, R-Storm can satisfy both soft and hard resource constraints as well as minimizing
network distance between components that communicate with each other. The problem of mapping tasks to machines can be reduced to Quadratic Multiple 3-Dimensional Knapsack Problem, which is an NP-hard problem. However, our proposed scheduling algorithm within R-Storm attempts to bypass the limitation associated with NP-hard class of problems.

We evaluate the performance of both Stela and R-Storm through our implementations of them in Storm by using several micro-benchmark Storm topologies and Storm topologies in use by Yahoo! In. Our experiments show that compared to Apache Storm’s default scheduler, Stela’s scale-out operation reduces interruption time to as low as 12.5% and achieves throughput that is 45-120% higher than Storm’s. And for scale-in operations, Stela achieves almost zero throughput post scale reduction while two other groups experience 200% and 50% throughput decrease respectively. For R-Storm, we observed that schedulings of topologies done by R-Storm perform on average 50%-100% better than that done by Storm’s default scheduler.
To Father and Mother
ACKNOWLEDGMENTS

I would like to thank my advisor Professor Indranil Gupta for guiding me through my research. I would also like to thank my research partner Le Xu for collaborating with me on my research in distributed data stream processing. I would also like to thank everyone in the Distributed Protocol’s Research Group (DPRG) for making my academic experience a more enjoyable one.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1
 1.1 Technical Contributions .. 2

CHAPTER 2: BACKGROUND ... 4
 2.1 Data Stream Processing Model ... 4
 2.2 Overview of Storm ... 5
 2.3 Example Use Cases ... 8

CHAPTER 3: RELATED WORK ... 10
 3.1 Elasticity in Distributed Data Stream Processing Systems 10
 3.2 Resource Aware Scheduling .. 12

CHAPTER 4: STORM ELASTICITY ... 15
 4.1 Importance of Elasticity .. 15
 4.2 Goals ... 16
 4.3 Stela Policy and Metrics .. 16
 4.3.1 Determining Available Executor Slots and Load Balancing 17
 4.3.2 Detecting Congested Operators ... 17
 4.3.3 Stela Metrics ... 19
 4.3.4 Stela: Scale-out ... 21
 4.3.5 Stela: Scale-in .. 23
 4.4 Implementation ... 25
 4.4.1 Core Architecture .. 26
 4.4.2 Topology Aware Strategies .. 28

CHAPTER 5: RESOURCE AWARE SCHEDULING IN STORM 30
 5.1 Importance of Resource Aware Scheduling in Storm 30
 5.2 Problem Definition ... 31
 5.3 Proposed Algorithm .. 36
 5.3.1 Algorithm Description .. 39
 5.3.2 Task Selection .. 41
 5.3.3 Node Selection .. 43
 5.4 Implementation .. 43
 5.4.1 Core Architecture .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.2 User API</td>
<td>45</td>
</tr>
<tr>
<td>CHAPTER 6: EVALUATION</td>
<td>48</td>
</tr>
<tr>
<td>6.1 Stela Evaluation</td>
<td>48</td>
</tr>
<tr>
<td>6.1.1 Experimental Setup</td>
<td>48</td>
</tr>
<tr>
<td>6.1.2 Micro-benchmark Experiments</td>
<td>48</td>
</tr>
<tr>
<td>6.1.3 Yahoo Storm Topologies: PageLoad and Processing</td>
<td>52</td>
</tr>
<tr>
<td>6.1.4 Convergence Time</td>
<td>55</td>
</tr>
<tr>
<td>6.1.5 Scale-In Experiments</td>
<td>57</td>
</tr>
<tr>
<td>6.2 R-Storm Evaluation</td>
<td>58</td>
</tr>
<tr>
<td>6.2.1 Experimental Setup</td>
<td>58</td>
</tr>
<tr>
<td>6.2.2 Experimental Results</td>
<td>60</td>
</tr>
<tr>
<td>6.2.3 Micro-benchmark Storm Topologies: Linear, Diamond, and Star</td>
<td>61</td>
</tr>
<tr>
<td>6.2.4 Yahoo Topologies: Page Load and Processing Topology</td>
<td>64</td>
</tr>
<tr>
<td>CHAPTER 7: CONCLUSION</td>
<td>67</td>
</tr>
<tr>
<td>7.1 Future Work</td>
<td>68</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>70</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

As our society enters an age dominated by data, processing large amounts of data in a timely fashion has become a major challenge. According to a recent article by BBC News [2], 2.5 exabytes or 2.5 billion gigabytes of data is generated every day in 2012. Seventy five percent of this is unstructured and comes from sources such as voice, text, and video. The volume of data is projected to grow rapidly over the next few years with the continued penetration of new devices such as smartphones, tablets, virtual reality sets, wearable devices, etc.

In the past decade, distributed computation systems such as [3] [4] [5] [6] [7] have been widely used and deployed to handle big data. Many systems, like Hadoop, have a batch processing model which is intended to process static data. However, a demand has arisen for frameworks that allow for processing of live streaming data and answering queries quickly. Users want a framework that can process large dynamic streams of data on the fly and serve results to potential customers with low latency. For instance, Yahoo! Needs to use a stream processing engine to perform for its advertisement pipeline processing, so that da campaigns can be monitored in real-time.

To meet this demand, several new stream processing engines have been developed recently, and are in use widely in industry, e.g., Storm [8], System S [9], Spark Streaming [10], and others [11] [12] [13]. Apache Storm is the most popular among these, and it uses a directed graph of operators (called “bolts”) running user-defined code to process the streaming data.

Unfortunately, these new stream processing systems used in industry lack many desired features. One feature is the ability to seamlessly and efficiently scale the number of servers in an
on-demand manner, i.e., when the user requests to increase or decrease the number of servers in the application. For instance, Storm simply un-assigns all processing operators and then reassigns them in a round robin fashion to the new set of machines. This simplistic round robin approach fails to analyze which part of the application job really needs more computation resources. Without deeper analysis into the application itself, the full benefit of adding new machines may not be reaped. Furthermore, the round robin approach could cause interruptions to ongoing computation for long durations due to potentially having reschedule every operator, which results in sub-optimal throughput after the scaling is completed.

Another feature, is an intelligent scheduler that schedules applications effectively. The current scheduler in Storm simply does a round robin scheduling of operators in the set of machines in the cluster. Such a naïve scheduling may cause resources to be not used in an efficient manner. Each application may have different resource requirement and a cluster may have different resource availabilities at the different times. By not considering resource location (in terms of network distance), resource demand, and resource availability, a scheduling may be very inefficient.

1.1 Technical Contributions

This work makes the following technical contributions:

1) We developed a System called Stela, which is, to the best of our knowledge, the first system that can create elasticity within Storm.
2) We provide an evaluation of Stela on a range of micro-benchmarks as well as on applications used in industry.

3) We have created a system call R-Storm that greatly improves the overall performance of Storm by scheduling applications based on resource requirement and availability.

4) We also evaluate the performance of R-Storm on a range of micro-benchmarks as well as applications used in industry.

The rest of the work is organized as follows. In Chapter 2, we provide a background on data stream processing and an overview on Storm. In Chapter 3, we introduce Storm elasticity and the system called we developed called Stela that enables efficient scale-in and -out operations in Storm. We present in detail the metrics and algorithms that went into the design of Stela. We also provide a discussion of works related to elasticity in data stream processing systems. In Chapter 4, we present a resource aware scheduler for Storm called R-Storm. We describe in detail the importance of resource aware scheduling, the problem definition, and the scheduling algorithms used in R-Storm. We also discuss works related to resource aware scheduling in the context of data stream processing systems. In Chapter 5, we provide and evaluation for both Stela and R-Storm. In Chapter 6, we provide concluding remarks.
CHAPTER 2: BACKGROUND

In this chapter, we first define the data stream processing model we are assuming for this paper. The data stream model we define also defines the format or data flow model of applications running on a distributed data stream processing system. Later in the chapter, we will give a brief overview of the popular distributed data stream processing system, Storm, since this is the system our implementation targets.

2.1 Data Stream Processing Model

In this paper, we target distributed data stream processing systems that use a directed acyclic graph (DAG) of operators to perform the stream processing. A visual example of the above defined model is shown in Figure 1. Operators that have no parents are sources of data injection, e.g., they may read from a crawler. Operators with no children are sinks. Each sink outputs data (e.g., to a GUI or database), and the application throughput is calculated as the sum of throughputs of all sinks in the application. An application may have multiple sources and sinks.
Definition 1. A data stream processing model can be referenced as a directed graph \(G = (V,E) \), where:

1. \(V \) is a set of vertices
2. \(E \) is a set of directed edges each of which is an ordered pair of vertices since \(G \) is a directed graph
3. \(\forall e \in E \) signifies a flow of data that can also be represented as ordered pair \((v_i, v_j)\) or the pair of vertices that are connected by \(e \)
4. \(\forall v \in V \) represents a processing operator of a flow of data \(e \in E \)
5. There is at least one \(v \in V \) such that \(v \) is a source of information and \(v \) does not have any parents. We call this a Source.
6. For any \(v_i \in V \) and \(v_j \in V \), if there is a path \(v_i \to v_j \) then there cannot be a path \(v_j \to v_i \) and vice versa. We are assuming an acyclic graph.

2.2 Overview of Storm

Storm Application: Apache Storm is a distributed real time processing framework that can process incoming live data in real time [8]. In Storm, a programmer codes an application as a Storm topology, which is a graph, typically a DAG of, operators (also referred to as components),
sources (called *spouts*), and sinks. While Storm topologies allow cycles, they are rare and we do not consider them in this paper. The operators in Storm are called *bolts*. Sources and sinks are also operators since they can manipulate and process data as well. The *streams* of data that flow between two adjacent bolts are composed of *tuples*. A Storm *task* is an instantiation of a spout or bolt - users can specify a *parallelism hint* to say how many *tasks* a bolt should be parallelized into. Storm uses *worker processes*, which contain *executors*, each of which is a thread that is spawned in a worker process that may execute one or more tasks.

The basic Storm operator, namely the bolt, consumes input streams from its parent spouts and bolts, performs processing on received data, and emits new streams to be received and processed downstream. Bolts can filter tuples, perform aggregations, carry out joins, query databases, and in general any user defined functions. Multiple bolts can work together to compute complex stream transformations that may require multiple steps, like computing a stream of trending topics in tweets from Twitter [8] Bolts in Storm are stateless. Vertices 2-6 in Figure 1 are examples of Bolts.

Storm Infrastructure: A Storm Cluster has two types of nodes: the master node, and multiple workers. The master node is responsible for scheduling tasks among worker nodes. The master node runs a daemon called *Nimbus*. Nimbus communicates and coordinates with Zookeeper [14] to maintain a consistent list of active worker nodes and to detect failure in the membership.

Each server runs a worker node, which in turn runs a daemon called the *supervisor*. The supervisor continually listens for the master node to assign it tasks to execute. Each worker contains many worker processes which are the actual containers for tasks to be executed. Nimbus
can assign any task to any worker process on a worker node. Multiple worker processes at a node can thus be used for multiplexing.

Each operator (bolt) in a Storm topology can be parallelized to potentially improve throughput. The user needs the explicitly specify a parallelization hint for each bolt, and Storm creates that many tasks for that bolt. Each of these concurrent tasks contains the same processing logic but may be executed at different physical locations and receive data from different sources. Data incoming to that bolt may be split among constituent tasks using one of many grouping strategies, e.g., shuffle grouping, fields grouping, all grouping, etc.

![Intercommunication of tasks within a Storm topology](image)

<table>
<thead>
<tr>
<th>Component Name</th>
<th># of Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spout_1</td>
<td>3 (T1, T2, T3)</td>
</tr>
<tr>
<td>Bolt_1</td>
<td>2 (T4, T5)</td>
</tr>
<tr>
<td>Bolt_2</td>
<td>3 (T6, T7, T8)</td>
</tr>
<tr>
<td>Bolt_3</td>
<td>2 (T9, T0)</td>
</tr>
</tbody>
</table>

Figure 2: Intercommunication of tasks within a Storm topology
Storm Scheduler: Storm's default Storm scheduler (inside Nimbus) places tasks of all bolts and spouts on worker processes. Storm prefers a round robin allocation in order to balance out load, however, this may result in tasks of one bolt being placed at different workers. The default scheduler does a round robin allocation among all the worker processes on every node in the cluster. Figure 2 shows the intercommunication of tasks organized by bolt. However the actual intercommunication relative to the physical network and machines can be quite different – Figure 3 shows an example of a Storm cluster of three machines running the topology shown in Figure 2. In Figure 3 tasks are scheduled in a round robin fashion across all available machines.

2.3 Example Use Cases
A paper from Stanford outlined some important uses of data stream processing systems. The need for processing continuous data streams can be found in fields such as web applications, finance, security, networking, and sensor monitoring [15]. The following is a short list of real life examples

- **TraderBots** [16] is a web-based financial service that allows uses to query live streams of financial data such as stock tickers and news feeds.
- Modern security applications such as, **iPolicy Networks** [17], use data stream processing to inspect live packets to detect intrusion in real-time.
- Yahoo [18] uses data stream processing systems to conduct real-time performance monitoring by processing large web logs produced by clickstreams to track webpages that encounter heavy traffic [19].
- Several sensor monitor applications [20] [21] use data stream processing to combine, monitor, and analyze streams of data produced by sensors that distributed in the real world.

There are many other use cases for data stream applications. For a list of companies that use Apache Storm please see [8].
CHAPTER 3: RELATED WORK

This chapter presents a discussion of related works pertaining to elasticity in distributed systems and resource aware scheduling. We provide a list and discussion of influential works in these two areas. We also provide a discussion of how our work differentiates from other works done in these areas.

3.1 Elasticity in Distributed Data Stream Processing Systems

Stormy [11] is a distributed stream processing service recently developed by researchers for ETH Zurich and University of California, Berkeley. According the paper they published, Stormy was designed with multi-tenancy, scalability and elasticity in mind. The Stormy processing paradigm consists of queries and streams. Queries processes the data in a stream or multiple streams. Stormy organizes physical nodes into a logical ring and a node is responsible for the key space between its own and its predecessor. The technique Stormy uses for scaling in and scaling out is called Cloud Bursting. In Cloud Bursting, one node, which is elected through a leader election algorithm, determines whether to add a new node into the system or remove a node in the system. This node that determines the elastic state of the cluster is called the cloud bursting leader. If the cloud bursting leader determines that the overall load of the system is getting too high, it will introduce a new node into system. This new load will take over parts of the data range from its neighbors. The cloud bursting is a quite simple technique that might not deliver the optimal benefit of introducing new nodes into the system. When a new node in added to the system, its takes a random position on the logical ring and takes over portions of the data range of its
neighbors. This technique does not explore the reason why the system might be overloaded or where the primary cause of overload/bottleneck may be. In Stela, we take into account these factors when conducting elasticity operations in Storm.

Increasing the parallelism of processing operators to increase performance is not a new concept. There has been a couple papers [22] [23] from researcher at IBM T.J. Watson research that experiment with IBM System S [12] [24] [9] and SPADE [25] by increasing the parallelism of processing operators. These papers explores how increasing the parallelism of processing operators will increase performance and how to identify when peak performance of an operator is achieved. The techniques used in these papers involve applying networking concepts such as congestion control to expand and contract the parallelism of a processing operator by constantly monitoring the throughput of its links. The work of these researchers’ contrasts with our work since Stela will apply novel analytics to the processing graph as well as monitor link performance. In our work we realize that there is only a limited amount of resources to scale out to and our system intelligently identifies which processing operators, when further parallelized, will cause the overall throughput to increase the most.

Based on its predecessor Aurora [26], Borealis [27]is a stream processing engine that enables queries to be modified on the fly. Different from Stela, Borealis focuses on load balancing on a node bases and distributed load shedding in a static environment. Borealis uses correlation based operator distribution to maximize the correlation between all pairs of operators within the workflow. Borealis also uses ROD (resilient operator distribution) to determine the best operator distribution plan that is closest to an "ideal" feasible set: a maximum set of nodes that are un-overloaded.
StreamCloud [28] is a data streaming system designed to be elastic and scalable. StreamCloud is built on top Borealis Stream Processing Engine [13] aimed to create elasticity in the existing Borealis system. StreamCloud modifies parallelism by splitting queries into sub queries to be executed on nodes and creates a rebalancing mechanism that allows for adjustments in resources to be used. The rebalancing mechanism in StreamCloud that allows Borealis to be elastic monitors the cluster for CPU utilization. From this these statistics gathered from the cluster, StreamCloud will migrate queries or increase the parallelism of queries. StreamCloud lacks the analytics of processing graph that Stela has. Stela not only looks at resource utilization of resources in the cluster but also intelligently analyzes the processing graph to maximize the throughput of the running computation with limited amount of new resources.

3.2 Resource Aware Scheduling

Some research work has been done in the space of scheduling for Hadoop MapReduce which share many similarities with real-time processing distributed system. In the work from Jorda et al [29], a resource-aware adaptive scheduling for a MapReduce Cluster is proposed and implemented. Their work is built upon the observation that there can be different workload jobs, and multi-users running at the same time on a cluster. By taking into account the memory and CPU capacities for each Task Tracker, the algorithm is able to find a job placement that maximizes a utility function while satisfying resource limits constraints. The algorithm is derived from a heuristic optimization algorithm to Class-Constrained Multiple Knapsack Problem which is NP-hard. However, their work fails to take network into resource constraints which is a major bottleneck for large distributed systems such as Storm.
Aniello et al in their paper [30] propose two scheduling algorithms for Storm. The default scheduling algorithm currently being applied in Storm does not look into the priority and the loads requirements of tasks, and simply uses a round-robin approach. As an attempt to enhance it, the authors propose a coarse version of scheduler as an offline algorithm, and later introduce an online algorithm. However, their scheduler only takes into account the CPU usage of the nodes, with an average of 20-30 percentage improvement in performance in total.

In the paper [31], Joel et al described a scheduler for System S, which is similar to Storm, a distributed stream processing system. The proposed algorithm is broken into four phases and runs periodically. At first and second phases, the algorithm decides which job to admit, which job to reject, and compute the candidate processing nodes. In the third and last phases, it computes the fractional allocations of the Processing elements to nodes. However, the approach only accounts processing power as resource and the algorithm itself is relatively complex requiring certain amount of computation.

The resource-aware scheduling in Storm needs to schedule a number of tasks into different nodes to maximize the throughput of applications (topologies) while still fulfilling the resource constrains (e.g. memory, CPU usage and bandwidth). A similar problem domain is the course timetabling problem, where we want to assign a number of events (courses) to a number of resource (classrooms) within a period of time (e.g. a week) in a way that a number of hard and soft constrains are satisfied. The goal of algorithm is to schedule tasks so that the solution satisfies given hard constraints rigidly while fulfilling soft constraints to the possible extent. The main similarity between R-Storm scheduling and timetabling is the fact that resource constrains in R-Storm can are also modeled as hard and soft constrains. In order to generate best throughput, it is ideal to put two tasks as close as possible if one task consumes the tuples emitted by the other task.
(soft-constrains) as long as adding this specific task on this node will not exceed the capacity of soft and hard constrains. [32], [33], and [34] defined several variations of timetabling problems with corresponding heuristic algorithms described.
CHAPTER 4: STORM ELASTICITY

In this chapter, we discuss how to create elasticity in distributed data stream processing systems like Storm. We introduce a system called Stela that provides techniques for scaling in and out in distributed data stream systems. We discuss the important metrics and algorithms that went into the design of Stela. We describe proposed policies for scaling-in and -out that are used in Stela.

4.1 Importance of Elasticity

Scaling-in and -out are critical tools for customers. For instance, a user might start running a stream processing application with a given number of servers, but if the incoming data rate rises or if there is a need to increase the processing throughput, an administrator may wish to add a few more servers (scale-out) to the stream processing application. On the other hand, if the application is currently under-utilizing servers, then the user may want to remove some servers (scale-in) to reduce operational costs (e.g. if servers are VMs rented on AWS). Elasticity also enables users to take advantage of the pay-as-you-go model that money cloud providers adopt. Server utilization in datacenters in the real world have been estimated to be in the range from 5% to 20% [35] [36]. Thus, elasticity can majorly reduce resource waste and therefore operational cost. A more detailed analysis of cost savings when using elastic systems are explain in [37].
4.2 Goals

To support on-demand scaling operations, two goals are important: 1) the interruption to the ongoing computation (while the scaling operation is being carried out) should be minimized, and 2) the post-scaling throughput should be optimized. We present a system, named Stela that meets these two goals. For scale-out, Stela does this in two ways: first, it carefully selects which operators are given more resources, and secondly performs the scale-out operation in a way that is minimally obtrusive to the ongoing stream processing to the ongoing stream processing.

To select the best operators to give more resources, we need to develop metrics that can successfully capture those components (e.g., bolts and spouts in Storm) that are: i) congested and are being overburdened with incoming tuples, and ii) affect throughput the most because they have a large number of sink operators reachable from them, and iii) have many uncongested paths to their sink operators.

4.3 Stela Policy and Metrics

In this section, we focus on the scale-out operation. When the user requests a scale-out, Stela needs to decide which operators (i.e., bolts or spouts in Storm) to give more resources to (i.e., assign more tasks to). Stela first captures those operators that are congested based on their input and output rates. For it to decide the parallelization level for a congested operator, Stela needs to be able to calculate a metric for each operator that captures the percentage of total application throughput (across all sinks) that the operator has direct impact on, but by ignoring paths in the
DAG that are already congested. A higher value of this calculated metric needs to indicate higher performance of an operator and less likelihood that the operator contribution to the overall throughput is bounded by some congested downstream operator. This ensures that giving more resources to that operator will maximize the effect on the throughput. Given the calculated values of such a metric for each operator, Stela can iteratively assign one or more tasks to the operator (from among those congested) that has the highest calculated value for this metric, and re-calculates a interpolated value for this metric for the future (given the latest scale-out), and iterates this process. The total number of new tasks assigned (number of iterations in Stela) ensures that the average per-server load remain the same pre- and post-scaling.

4.3.1 Determining Available Executor Slots and Load Balancing

Storm’s default scheduler distributes executors evenly across the worker nodes to guarantee each worker node is assigned a more or less equal number of executors. To retain Storm’s efficiency on a scaling operation, Stela allocates executor slots on the new worker nodes(s) such that the average number of executor slots per worker node remains unchanged. Concretely we determine the executor slots \(N_{\text{slots}} = \frac{N_{\text{originalExecutors}}}{M_{\text{Original}}}\) where \(N_{\text{originalExecutors}}\) is the total number of executor before scaling and \(M_{\text{Original}}\) is the number of worker nodes in the original cluster.

4.3.2 Detecting Congested Operators

17
The primary goal of Stela is to re-parallelize heavily congested operators. We consider an operator is congested when the rate of tuples an operator receives exceeds the rate of tuples it is executing. We use the procedure shown in Algorithm 1 to detect heavily congested operators. To compute the receiving rate of operator o, Stela records the number of tuples being emitted by each parent of o every 10 seconds. The input rate of operator o is calculated by averaging the sum of execution rate of all o's parents over a window of the last 200 seconds. The execution rate of o is also calculated over the same window of time.

Algorithm 1 Detecting heavily congested operators in the topology

```
1: Procedure CONGESTIONDETECTION
2:    for each Operator $o \in$ Topology do
3:        TotalInput ← $\sum$ ExecuteRateMap($o$.parent);
4:        TotalOutput ← ExecuteRateMap($o$);
5:        if TotalInput / TotalOutput > CongestionRate then
6:            add $o \rightarrow$ CongestedMap;
7:    end if
8: end for return CongestedMap
9: end procedure
```

In Algorithm 1, when the ratio of input to output rates exceeds a threshold $CongestionRate$, we consider that operator to be congested. When congestion doesn't exist in an operator, the operator's receiving rate equals to execution rate. $CongestionRate$ can be tuned as needed and it controls the sensitivity of the algorithm: lower $CongestionRate$ values result in fewer congested operators being captured. For Stela experiments, we set $CongestionRate$ to be 1.2. To compensate for inaccuracies in measurements, we recommend $CongestionRate$ to be greater than 1.
4.3.3 Stela Metrics

Once the set of congested operators, \textit{CongestedMap}, has been calculated, Stela needs to prioritize them in order to perform allocation at the limited number of extra slots (at the new worker nodes). Thus, Stela needs to utilize some sort of metric to sort these congested operators by.

There has been existing work done on metric design to capture congestion and measure throughput in data stream processing systems. An existing work [28] proposed the use of metrics such as the \textit{congestion index} and \textit{throughput}. The congestion index is a measure of the fraction of time a tuple is blocked due to back pressure and the throughput is the number of tuples processed over a sample period. However, these metrics do not point to the operator(s) that cause the congestion nor does it accurately suggests which operator, when further parallelized, will be likely improve the performance of the whole application. Using these one dimensional metrics also increases the time the system will need to converge when scaling-in or scaling-out since these metrics are calculated in a feedback loop that adjusts parallelism based on current results.

We decided to use the metric, \textit{Effective Throughput Percentage} (ETP) [1] that more accurately captures location of congestion and the best potential operators to adjust parallelism. Below we will briefly explain how ETP of an operator is calculated.

\[
ETP_o = \frac{Throughput_{EffectiveReachableSinks}}{Throughput_{Workflow}}
\]
Here, \(\text{Throughput}_{\text{EffectiveReachableSinks}} \) denotes the sum of throughput of all sinks reachable from \(o \) by an un-congested path, and \(\text{Throughput}_{\text{Workflow}} \) denotes the sum of throughput of all sinks of the entire workflow. The algorithm is shown in Algorithm 2.

Algorithm 2 Find Metric ETP of an operator

1: **Procedure** FINDETP
2: \[\text{if } o.child = \text{null then return } o.\text{throughput}; // o is a sink} \]
3: \[\text{end if} \]
4: \[SubtreeSum \leftarrow 0; \]
5: \[\text{for each child } child \in \text{o do} \]
6: \[\text{if } child.\text{congested} = \text{true then} \]
7: \[\text{continue; //if the child is congested, give up the subtree rooted form the child} \]
8: \[\text{else} \]
9: \[SubtreeSum = SubtreeSum + \text{FINDETP}(\text{child}) \]
10: \[\text{end if} \]
11: \[\text{end for} \]
12: **end procedure**

This approach is based on two key intuitions. First, this approach prioritizes those operators that are guaranteed to effect the highest volume of sink throughput – giving more resources to this operator will certainly increase throughput of all sinks reachable via non-congested paths, because the scaling is not reducing the resources assigned to any existing operator. Second, if a congested operator has many congested paths to its reachable sinks (and thus a low ETP), assigning it more resources would have only increased the level of congestion on the downstream congested operators, which is undesirable.
To make the second intuition more concrete, consider two congested operators a and b, where the latter is a descendant of the former in the application DAG. Consider the set of operators S that are b's descendants – increasing the execution rate of operator a will not improve throughput of operators in S without resolving b's congestion first. Thus the throughput produced by any operator in S will not be included while calculating ETP of a. If on the other hand operator a has no congested descendants, its ETP will be the sum of all throughput of all sinks reachable from it. Effective Throughput Percentage (ETP) is discussed in more detail in another work on elasticity [1].

4.3.4 Stela: Scale-out

During an iteration, when Stela has calculated the ETP for all congested operators, it targets the operator with the highest ETP and assigns it one extra executor slot on the newly added worker node. If multiple worker nodes are being added, then a random worker node’s executor is chosen. This algorithm runs N_{slots} iterations to select N_{slots} target operators (Section 3.3.1).
Algorithm 3 depicts the pseudo code. In each iteration, Stela runs Algorithm 1 to construct a *CongestedMap*, as explained earlier in Section 3.3.2. If the there are no congested operators in the application, Stela chooses a source operator (e.g., a Spout in Storm) as a target to increase the input rate of the entire workflow – this increases the rate of incoming tuples to the entire application. If congested operators do exist, for each operator, Stela finds its ETP using the algorithm discussed in Section 3.3.3. The result is sorted into ETPMap. Stela chooses the operator that has the highest ETP value from ETPMap as a target for the current iteration. It assigns this operator an extra slot on one of the new workers nodes.

For the next iteration, Stela estimates the execution rate of the target operator proportionally, i.e., if the operator previously had an execution rate E and k tasks, then its new...
projected execution rate is \(E^{\frac{k+1}{k}} \). This is a reasonable approach since all workers have the same number of tasks and thus proportionality holds.

Now Stela once again calculates the ETP of all operators in the application -- we call these ETP values as projected ETP, because they are based on estimates. These iterations are repeated until all available executor sets are filled.

In Algorithm 3, procedure FindETP involves searching for all reachable sinks for every congested operator -- as a result each iteration of Stela has a running time complexity of \(O(n^2) \) where \(n \) is the number of operators in the workflow. The entire algorithm has a running time complexity of \(O(m n^2) \), where \(m \) is the number of new executor slots at the new worker node(s).

4.3.5 Stela: Scale-in

The techniques used in scale-out can also be used for scale-in, most importantly, the ETP metric. However, for scale-in we will not be calculating the ETP per operator but per machine in the cluster. For scale-in, we first, calculate the ETPSum for each machine. ETPSum is defined as:

\[
\text{ETPSum}(\text{machine}_k) = \sum_{i=1}^{n} \text{FindETP}(\text{FindComp}(\tau_i))
\]

ETPSum for a machine is the sum of all ETP of instances of operators that reside of the machine. Thus, for every task, \(\tau_i \), that resides on machine, \(\tau_i \), we first find the operator \(\tau_i \) is an instance of and then find the ETP of that operator. After, to get ETPSum, we sum all the ETPs.
ETPSum of a machine is an indication of how much the tasks executing on that machine contribute to the overall throughput. Therefore, in general, ETPSum can be thought of as an importance metric of a machine. The intuition behind ETPSum is that a machine with lower ETPSum is better candidate to be removed in a scale-in operation than a machine with higher ETPSum since a machine with lower ETPSum negatively influence the application less in both throughput and downtime to the running application.

Algorithm 4 Stela: Scale-In

1: **Procedure** SCALE—IN
2: for each Machine $n \in$ cluster do
3: $ETP\text{MachineMap} \leftarrow ETP\text{MACHINESUM}(n)$
4: end for
5: $ETP\text{MachineMap}.sort()$ // sort ETPSum in increasing order
6: **REMOVE\text{MACHINE}(ETP\text{MachineMap}.first())**
7: **end procedure**
8: **Procedure** REMOVE\text{MACHINE}(Machine n, ETP\text{MachineMap} map)
9: for each task τ_i on Machine n do
10: if $i > map.size$ then
11: $i \leftarrow 0$
12: end if
13: Machine $x \leftarrow map.get(i)$
14: ASSIGN(τ_i, x)
15: $i + +$
16: end for
17: **end procedure**

When a scale-in operation needs to occur, the SCALE-IN procedure in Algorithm 4 is called. The procedure calculates the ETPSum for each machine in the cluster and puts the machine
and its corresponding ETPSum in the \textit{ETPMachineMap}. The ETPMachineMap is sorted by ETPSum values in increasing order. The machine with the lowest ETPSum will be the target machine to be removed in this round of scale-in. We then call the procedure \textit{RemoveMachine} to reschedule the tasks of the machine with the lowest ETPSum.

Tasks from the machine that is chosen to be removed are re-assigned to the other machines in the cluster in an iterative manner. Tasks will first be assigned one at a time starting with machines with lower ETPSum. Since there is an expectation that existing tasks running on a machine will be negatively affected by the addition of new tasks, this heuristic dampens the overall negative effect of assigning additional tasks to machines.

The intuition is that task additions to machines with lower ETPSum will have less of an effect on the overall performance since machines with less ETPSum contributes less to the overall performance. Starting the assignment of tasks to be rescheduled on machines with lower ETPSum will not only dampen the potential decrease in overall performance but also help shorten the amount of downtime the application will experience due to the rescheduling. When adding new tasks to a machine, existing tasks may need to be paused for a certain duration. Tasks on a machine with lower ETPSum contributes less to the overall performance and thus causes less overall downtime for the application.

4.4 Implementation

We have implemented Stella as a custom scheduler inside Apache Storm. A user may create a custom scheduler by creating a Java class that implements a predefined IScheduler
interface. The scheduler runs as part of the Storm Nimbus daemon. A user specifies which scheduler to use in a YAML formatted configuration file call `storm.yaml`. If no scheduler is explicitly specified, Storm will use its default scheduler for scheduling. The Storm scheduler is invoked by Nimbus periodically, with a default time period set to 10 seconds. Storm Nimbus is a stateless entity and thus, the Storm scheduler cannot store information across multiple invocations.

4.4.1 Core Architecture

![Implementation Diagram](image)

Figure 4: Implementation Diagram

The architecture of the implementation in Storm is visually presented in Figure 5. Our implementation of Stela in Storm consists of three modules:

- **StatisticServer** - This module is responsible for collecting statistics in the Storm cluster, e.g., throughput at each task, bolt, and for the topology. This data is used as input to Algorithm 1 and 2 in Section 3.3.2 and 3.3.3, respectively.
• *GlobalState* - This module stores important state information regarding the scheduling and performance of a Storm Cluster. This module holds information about where each task is placed in the cluster. This module also stores statistics like sampled throughputs of incoming and outgoing traffic for each bolt for a specific duration used to determine congested operators as mentioned in section 3.3.2 and serves as one of the inputs for Algorithm 1.

• *Strategy* - This module provides an interface for scale-out strategies to implement so that strategies can be easily swapped in and out for evaluation purposes. This module calculates a new schedule based on the scale-out strategy in use and may use information from the Statistics and *GlobalState* modules. The core Stela policy (Section 3.3.4) and Topology Aware strategies (Section 3.4.2) are implemented as a part of this module.

• *ElasticityScheduler* - This module is the custom scheduler that implements IScheduler interface. This class starts and initializes the *StatisticServer* and *GlobalState* modules. It also invokes the Strategy module to calculate a new scheduling when the scale-out needs to take place.

When a scale-in or -out signal is sent to the ElasticityScheduler, a procedure is invoked that detects newly joined machines based on previous membership. If no new machines are detected, the scale-in or -out procedure aborts. If new machines are found, the ElasticityScheduler invokes the Strategy module, which calculates the new scheduling. The new scheduling is then returned to the ElasticityScheduler and ElasticityScheduler will modify the current scheduling in the cluster accordingly.
4.4.2 Topology Aware Strategies

Initially, before we settled on the Stela design in Section 3.3, we attempted to design several topology-aware strategies for scaling out. We describe these below, and we will compare the approach based on Metrix X against these in our experiments in Section 3.5. They are thus a point of comparison for Stela.

Topology-aware strategies migrate existing tasks instead of increasing the parallelism of tasks as Stela does. These strategies aim to find “important” components/processing operators in a Storm Topology. These components that are deemed “important” are given priority to use additional resources when new nodes join the membership. We list some of the topology-aware strategies we developed.

- **Distance from spout(s)** - In this strategy, we prioritize components that are closer to the source of information as defined in Section 2.1. The rationale for this method is that if a component that is more upstream is a bottleneck, it will affect the performance of all bolts that are further downstream.

- **Distance to output bolt(s)** - In this strategy, higher priority for use of new resources are given to bolts that are closer to the sink or output bolt. The logic here is that bolts right connected near the sink affect the throughput the most.

- **Number of descendants** - In this strategy, importance is given to bolts with many descendants (children, children's children, and so on) because bolts with more descendants potentially have a larger effect on the overall application throughput.
- **Centrality** - In this strategy, higher priority is given to bolts that have a higher number of in- and out-edges adjacent to them (summed up). The intuition is that “well-connected” bolts have a bigger impact on the performance of the system than less well-connected bolts.

- **Link Load** - In this strategy, higher priority is given to bolts based on the load of incoming and outgoing traffic. This strategy examines the load of links between bolts and migrates bolts based on the status of the load on those links. Similar strategies have been used in [30] to improve Storm's performance. We have implemented two strategies for evaluation: Least Link Load and Most Link Load. Least Link Load strategy sorts executors by the load of the links it’s connected to and starts migrating tasks to new workers in by attempting to maximize the number of adjacent bolts that are on the same server. The Most Link Load strategy does the reverse.

During our measurements, we found that the Least Link Load based strategy is the most effective in improving performance among all the strategies mentioned above. Thus the Least Link Load based strategy is representative of strategies that attempt to minimize the network flow volume in the topology schedule. Hence in the next section, we will compare the performance of the Least Link Load based strategy with Stela.
CHAPTER 5: RESOURCE AWARE SCHEDULING IN STORM

In this chapter, we provided a detail description of resource aware scheduling in Storm. We introduce a system called R-Storm that schedules applications with considerations to resource requirements and resource availability in the underlying cluster. We introduce the notion of soft and hard resource constraints. We will discuss in detail the policies and algorithms used in R-Storm to schedule tasks within a topology such that violations to soft constraints are minimized and violations to hard constraints are prevented. To find an optimal scheduling, the problem can be mapped to a Quadratic Multiple 3-Dimensional Knapsack Problem of class NP-Hard. However, our proposed scheduling algorithm within R-Storm circumvents these computational challenges by using heuristics.

5.1 Importance of Resource Aware Scheduling in Storm

The importance of creating a new and intelligent scheduler in Storm is due to the naïve and over simplistic scheduler that is in current use within Storm. The current default scheduler within Storm simply applies a round robin scheduling of all executors of a topology to nodes in the cluster. Storm’s default scheduler does neither take into account the resource requirements of the topology that the user wishes to run or the resource availability of the cluster that Storm is executing in.

A Storm topology is a user-defined application that can have any number of resource constraints for it to run. Not considering resource demand and resource availability when
scheduling can be problematic. The resource on machines in the cluster can be easily over-utilized or under-utilized with can cause problems ranging from catastrophic failure to execution inefficiency. For example, a Storm cluster can suffer a potentially unrecoverable failure if certain executors attempt to use more memory than is available on the machine the executor resides on.

Over-utilization of resource other than memory can also cause the execution of topologies to grind to a halt. Under-utilization decreases resource utilization and can cause unnecessary expenditures in operating costs of a cluster. Thus, to maximize performance and resource utilization, an intelligent scheduler must take into account resource availability in the cluster as well as resource demand from a storm topology in order to calculate an efficient scheduling.

5.2 Problem Definition

The question we are trying to answer is how to assign tasks to machines. Each task has a set of certain resource requirements and each machine in a cluster has a set of resources that are available. Given these resource requirements and resource availability how can we create a scheduling such that, for all tasks, every resource requirement is satisfied if possible? Thus, the problem becomes find a mapping of tasks on machines such that every resource requirement is satisfied and at the same time no machine is exceeding its resource availability.

In this work, we consider three different types of resources: CPU usage, memory usage, and bandwidth usage. We define CPU resources as the project CPU usage/availability percentage, memory resources as the megabytes used or available, and bandwidth as the network distance between to nodes. We classify them as two different classes: hard constraints and soft constraints.
Hard constraints are resources which cannot exceeded, while **soft** constraints relates to resources which can be exceeded. In the context of our system, CPU and bandwidth budgets are considered soft constraints as they can be overloaded, while the memory is considered as a hard constraint as we cannot exceed the total amount of available memory.

In general, the number of constraints to use and whether a constraint is soft or hard is specified by the user. The reasoning behind having hard and soft constraints is that some resources have a graceful degradation of performance while others do not. For example, the performance of computation and network resources degrade as over utilization increases. However, if a system attempts to use more memory resources than physically available the consequences are catastrophic. We have also identified that to improve performance sometimes it is beneficial to over utilize one set of soft-constrained resources but gain better utilization of another set of soft-constrained resources. We assume that for each node of the cluster there is a specific limited budget for these resources. Similarily, each task specifies how much of each type of resource it needs. The goal is to efficiently assign tasks to different worker nodes while minimizing the total amount of resource usage. This problem can essentially be modeled as a linear programming optimization problem as we will discuss next.

Let $T = (\tau_1, \tau_2, \tau_3, \ldots)$ be the set of all tasks within a topology. Each task τ_i has a soft constraint CPU requirement of $c_{\tau_{ij}}$, a soft constraint bandwidth requirement of $b_{\tau_{ij}}$, and a hard constraint memory requirement of m_{τ_i}. We will discuss the notion of soft and hard constraints more in the next section. Similarly, let $N = (\theta_1, \theta_2, \theta_3, \ldots)$ be the set of all nodes, which correspond to total available budgets of W_1, W_2, and W_3 for CPU, bandwidth, and memory. For the purpose of quantitative modeling, let the throughput contribution of each node to be Q_{θ_i}. The
goal here is to assign tasks to a subset of nodes \(N' \subseteq N \) that maximizes the total throughput while tasks not exceeding the budgets \(W_1, W_2, \) and \(W_3 \). In other words,

\[
\text{Maximize } \sum_{i \in \text{clusters}} \sum_{j \in \text{nodes}} Q_{\theta_{ij}}
\]

\[s.t. \sum_{i \in \text{clusters}} \sum_{j \in \text{nodes}} c_{\tau_{ij}} < W_1 \]

\[\text{and } \sum_{i \in \text{clusters}} \sum_{j \in \text{nodes}} b_{\tau_{ij}} < W_2 \]

\[\text{and } \sum_{i \in \text{clusters}} \sum_{j \in \text{nodes}} m_{\tau_{ij}} < W_3 \]

Which is simplified into:

\[
\text{Maximize } \sum_{\theta \in N'} Q_{\theta_i} \text{ Subject to }
\]

\[
\sum_{\tau \in N'} c_{\tau_{ij}} < W_1, \sum_{\tau \in N'} b_{\tau_{ij}} < W_2, \sum_{\tau \in N'} m_{\tau_{ij}} < W_3
\]

This selection and assignment scheme is a complex and a special variation of Knapsack optimization problem. The well-known binary Knapsack problem is NP-hard but efficient approximation algorithms can be utilized (fully polynomial approximation schemes), so an approach is computationally feasible. However, the binary version, which is the most common Knapsack problem only considers a single constraint and enables only a subset of the tasks to be
selected, which is not desired as we need to assign all the tasks to the nodes, considering that there are multiple constraints.

To overcome the shortcomings of the binary Knapsack approach, we need to formulate the problem as other variations of Knapsack problem, which eventually assigns all the tasks to the nodes.

The first different concept in our formulation is the fact that our problem consists of multiple knapsacks (i.e. clusters and corresponding nodes). This may seem like a trivial change, but it is not equivalent to adding to the capacity of the initial knapsack. This variation is used in many loading and scheduling problems in Operations Research [38]. Thus our problem corresponds to a Multiple Knapsack Problem (MKP), in which we assign tasks to multiple different constrained nodes.

The second insight that we need to consider in our formulation is that if there is more than one constraint for each knapsack (for example, given knapsack scenario, both a volume limit and a weight limit, where the volume and weight of each item are not related), we get the multidimensional knapsack problem, or m-Dimensional Knapsack Problem. In our problem, we need to address 3 different resources (i.e. CPU, bandwidth, and memory constraints) which leads to a 3-Dimensional Knapsack Problem.

The third concept that we need to consider is that given the topology, assigning two successive tasks on the same node is more efficient than assigning them on two different nodes, or even two different clusters. This is another special variation of knapsack problem, called Quadratic Knapsack Problem (QKP) introduced by Gallo et al. [39] [40], which consists in choosing
elements from \(n \) items for maximizing a quadratic profit objective function subject to a linear capacity constraint.

Our problem is a **Quadratic Multiple 3-Dimensional Knapsack Problem** (we call it QM3DKP). We propose a heuristic algorithm that assigns all tasks to multiple nodes while with a higher probability two successive tasks being on the same node. The heuristic algorithm needs to be simple with low overhead to be suitable for real-time requirements of Storm applications.

Different variations of knapsack problem has been applied to certain contexts. Y. Song et al in their paper [41] investigated the multiple knapsack problem and its applications in cognitive radio networks. In their paper, a centralized spectrum allocation in cognitive radio networks has been formulated as a multiple knapsack problem. Lamani et al [42] also proposed an end-to-end quality of service to tackle the problem of setting end-to-end connections across heterogeneous domains modeling the complexity as a multiple choice knapsack problem. X. Xie and J. Liu in their paper [43] studied QKP, while also in [44], the authors applied the concept of m-dimensional knapsack problem for the first time to the packet-level scheduling problem for a network, and proposed an approximation algorithm for that.

Many algorithms have been developed to solve various knapsack problems using dynamic programming [45] [46], tree search (such as A*) techniques used in AI [47] [48], approximation algorithms [49] [50], and etc. However, these algorithms are constraining in terms of computational complexity even though some algorithms have pseudo polynomial runtime complexity. Most, if not all, of these algorithms would require much more time to compute a scheduling that than necessarily available in a distributed data stream system. Since data stream systems are required to respond to events as close to real-time as possible, scheduling decisions
need to be made in a snappy manner. The longer the scheduling takes to compute, the longer the
downtime an application will have.

5.3 Proposed Algorithm

In data centers, servers are usually placed on a rack connected to each by a top of rack
switch. The top of rack switch is also connect to another switch which connects server racks
together. The network layout can be represented by Figure 11. Data centers with this kind of layout
is likely where Storm clusters are going to be deployed. The design of our algorithm is influenced
by the environment Storm is going to be run in.

1) Inter-rack communication is the slowest

2) Inter-node communication is slow

3) Inter-process communication is faster

4) Intra-process communication is the fastest
As discussed in the previous section, let $T = (\tau_1, \tau_2, \tau_3, \ldots)$ be a topology. A task has a set of resource requirement needed in order to execute. Thus, a task τ_i has two soft resource constraints c_{τ_i} and b_{τ_i} and a hard resource constraint m_{τ_i}. A cluster can be represented as a set of nodes $N = (\theta_1, \theta_2, \theta_3, \ldots)$. Every node has a specific available memory, CPU, and network resources. A node θ_i has a resource availability denoted by c_{θ_i}, b_{θ_i}, and m_{θ_i} for CPU, bandwidth, and memory, respectively.

Therefore, the resource demand for a task τ_i can be denoted as a set or 3-dimensional vector,

$$A_{\tau_j} = \{m_{\tau_i}, c_{\tau_i}, b_{\tau_i}\}$$

and a set of soft constraints,

$$S_{\tau_i} = \{c_{\tau_i}, b_{\tau_i}\}$$
and set of hard constraints,

\[H_{\tau_i} = \{ m_{\tau_i} \} \]

Such that

\[H_{\tau_i} \subseteq A_{\tau_i} \]
\[S_{\tau_i} \subseteq A_{\tau_i} \]

and,

\[A_{\tau_i} = S_{\tau_i} \cup H_{\tau_i} \]

The resource availability of a node \(\theta_i \) can be denoted as a set or 3-dimensional vector,

\[A_{\theta_i} = \{ m_{\theta_i}, c_{\theta_i}, b_{\theta_i} \} \]

and a set of soft constraints,

\[S_{\theta_i} = \{ c_{\theta_i}, b_{\theta_i} \} \]

and set of hard constraints,

\[H_{\theta_i} = \{ m_{\theta_i} \} \]

Such that

\[H_{\theta_i} \subseteq A_{\theta_i} \]
\[S_{\theta_i} \subseteq A_{\theta_i} \]

And
\[A_{\theta_i} = S_{\theta_i} \cup H_{\theta_i} \]

We can generalize the resource demand of a specific task and the resource availability of a node as a \(n \)-dimensional vector residing in \(\mathbb{R}^n \).

Each soft constraint can have a weight attached to it, such that:

\[
|W| = |S| \\
S^0 = W \cdot S
\]

The reason for allowing constraints to be weighted is to enable normalized values for comparison purposes, as well as facilitating in providing more importance to more valued constraints.

5.3.1 Algorithm Description

Given a task \(\tau_i \), a vector \(A_{\tau_i} \) of each task’s resource demands and a cluster \(N = (\theta_1, \theta_2, \theta_3, \ldots) \) with each node \(\theta_i \) and a vector \(A_{\theta_i} \) of each node’s resource availability, the algorithm determines which node to schedule a task on. Assuming that each resource corresponds to an axis, we find the node \(A_{\theta_i} \) that is closest in Euclidean distance to \(A_{\tau_i} \) such that \(H_{\theta_i} > H_{\tau_i} \) for all hard constraints, so that no hard constraints are violated. We choose \(\theta_i \) as the node where we schedule task \(\tau_i \), and then update the available resources left on \(A_{\theta_i} \). We continue this process until all tasks get scheduled on nodes. Algorithm 5 describes a pseudo-code of our proposed heuristic algorithm.
Algorithm 5 Proposed Heuristic Algorithm

1: **Procedure** R-STORM
2: A_θ: set of all nodes θ_i in the n-dimensional space // (n=3 in our context)
3: A_{τ}: set of all tasks τ_i in the n-dimensional space // (n=3 in our context)
4: A_θ: n-dimensional vector of resource availability of a node θ_i, such that $A_{\theta_i} \in A_\theta$
5: A_{τ_i}: n-dimensional vector of resource requirement of a task τ_i, such that $A_{\tau_i} \in A_{\tau}$
6: **for** each task τ_i **do**
7: \[\text{select } A_{\theta_j} = \min \left(A_{\theta_j}, A_{\tau_i} \right) \forall A_{\tau_j} \in A_{\tau} \text{ given } d(\lambda, \lambda') \leftarrow \sqrt{(\lambda' \times x - \lambda \times x)^2 + (\lambda' \times y - \lambda \times y)^2 + (\lambda' \times z - \lambda \times z)^2} \forall \lambda \in A_\tau, \lambda \in A_\theta \text{ and } H_{\theta_i} > H_{\tau_i} \text{ // for all hard resource constraints} \]
8: \[A_{\theta_j} \leftarrow A_{\theta_j} - A_{\tau_i} \text{ //update the resource vector } A_{\theta_j} \text{ of selected node} \]
9: **end for**
10: **end procedure**

In Algorithm 5, Line 2 and 3 declares a list of nodes in the cluster and a list of tasks that need to be scheduled. Line 4 declares that for each node in the cluster there is an n-dimensional vector representing n-declared resource availabilities for that node. Similarly, Line 5 declares that for each task that needs to be scheduled an n-dimensional vector representing n-declared resource requirements for running an instance of that task. Thus, a node and task can be represented as a point or vector in an n-dimensional space. Line 6-8 describes how the tasks are scheduled. We iterate through the list of tasks that need to be scheduled and for each task represented as a vector in an n-dimensional space, we find the node vector (represents node resource availability) that is closes in Euclidian distance to the task vector. The node vector must also reside above up to n different planes that represent hard resource constraints. Thus, the node vectors we consider are the ones that must be able to satisfy fully all the hard resource constraints of the task.

Our proposed heuristic algorithm ensures the following properties:
1) Two successive tasks given the topology are scheduled on closest nodes, which ensures the intercommunication insights as described in the previous section.
2) No hard resource constraints is violated.
3) Resource wastes on nodes are minimized

Figure 6 shows a visual example of a selected minimum-distance node to a given task in the 3D resource space, while the hard resource constraint (i.e. Z axis) is not violated. Our algorithm consists of two parts, task selection and node selection.

![Figure 6: An example node selection in a 3D resource space](image)

5.3.2 Task Selection
For task selection, given the topology there should be a start point as well as a traversal algorithm. We assume that our algorithm starts selecting tasks from *Spouts*, which is discussed in Section 2.2. However, the starting point can be user defined based on which component the user deems the most important to the topology. For example, heuristics to determine the starting point could be: 1) most well connected component. The component with most directly connected neighbors. 2) The component with most descendants. 3) Components closer to the sinks and etc.

As for the traversal algorithms, we consider two popular graph traversal algorithms, breadth first search (BFS) and depth first search (DFS). Both of these construct spanning trees with certain properties useful in graph algorithms. In the BFS traversal, we just keep a tree (the BFS tree), a list of tasks to be added to the tree, and markings (Boolean variables) on the tasks to tell whether they are in the tree or list. BFS traversal of the tasks corresponds to some kind of tree traversal. But it isn't preorder, post-order, or even in-order traversal. Instead, the traversal goes a specific *level* at a time, left to right within a level (where a level is defined simply in terms of distance from the spout). The DFS algorithm is the other way of our task selection approach, which is closely related to preorder traversal of a tree.

To prevent infinite loops, we only want to visit each task once. Just like in BFS we use marks to keep track of the tasks that have already been visited, so not to visit them again. Our overall DFS traversal then simply initializes a set of markers, and just like in the BFS traversal, if a task has several intercommunicated neighbors it would be equally correct to go through them in any order. We'll start by the Spout, and use one of these two traversal algorithms to select next task.

Take the topology depicted in Figure 1 for example. If we were to start our task selection at the spout, component 1 would be our starting point. Then we would traverse the topology in a
depth first manner. Thus, the ordering of the traversal would be 1, 2, 3, 4, 5, and 6. A task is selected to be scheduled at component 1, then at component 2 and so on. Once we scheduled a task belonging to component 6 and there are still remaining tasks waiting to be scheduled for components previous in the traversal ordering, we loop back and schedule them according to the traversal ordering. We do this until every task is scheduled.

5.3.3 Node Selection

After a task is selected, a node needs to be selected to run this task. If the task that needs to be scheduled is the first task in a topology, find the server rack or sub-cluster with the most available resources. Afterwards, find the node in that server rack with the most available resources and schedule the first task on that node which we will refer to as the reference node or Ref Node. For the rest of the tasks in the Storm topology, we will find nodes to schedule based on the Algorithm 1 with our bandwidth attribute b_{θ_i} defined as the network distance from Ref Node to node θ_i. By selecting nodes in this manner, tasks will be patched as tightly on and closely around the Ref Node as resource constraints allow, which minimizes the network latency of tasks communicating with each other.

5.4 Implementation

We have implemented R-Storm as a custom version of Storm. We have modified the core Storm code to allow physical machines to send their resource availability to Nimbus. The core
scheduling functions of R-storm is implemented as a custom scheduler in our custom version of Storm. A user can create a custom scheduler by creating a Java class that implements a predefined IScheduler interface. The scheduler runs as part of the Storm Nimbus daemon. A user specifies which scheduler to use in a YAML formatted configuration file call storm.yaml. If no scheduler is explicitly specified, Storm will use its default scheduler for scheduling. The Storm scheduler is invoked by Nimbus periodically, with a default time period set to 10 seconds. Storm Nimbus is a stateless entity and thus, any Storm scheduler does not have any mechanism to store any information across multiple invocations.

5.4.1 Core Architecture

Our implementation of R-Storm has three modules:

1) StatisticServer - This module is responsible for collecting statistics in the Storm cluster, e.g., throughput on a task, component, and topology level. The data generated in this module is used for evaluative purposes.

2) GlobalState - This module stores important state information regarding the scheduling and resource availability of a Storm Cluster. This module will hold information about where each task is placed in the cluster. This module also stores all the resource availability information of physical machines in the cluster and the resource demand information of all tasks for all Storm topologies that are scheduled or needs to be scheduled.
3) ResourceAwareScheduler - This module is the custom scheduler that implements IScheduler interface. This class starts and initializes the StatisticServer and GlobalState modules. This module also contains the implementation of the core R-Storm scheduling algorithm.

5.4.2 User API

We have designed a list of APIs for the user to specify the resource demand of any component and the resource availability of any physical machine. For a Storm topology, the user can specify the amount of resources a topology component (i.e. Spout or Bolt) is required to run a single instance of the component:

```java
public T setMemoryLoad(Double amount)
```

Parameters:

- **Double amount** – The amount of on memory an instance of this component will consume in megabytes

```java
public T setCPULoad(Double amount)
```

Parameters:

- **Double amount** – The amount of CPU an instance of this component will consume
Example of usage:

```java
SpoutDeclarer s1 = builder.setSpout("word", new TestWordSpout(), 10);

s1.setMemoryLoad(1024.0, 512.0);

s1.setCPULoad(50.0);
```

Next, we discuss how to specify the amount of resources available on a machine. A storm user can specify node resource availability by modifying the `conf/storm.yaml` file located in the storm home directory of that machine.

A storm user can specify how much available memory a machine has in megabytes adding the following to `storm.yaml`:

```
supervisor.memory.capacity.mb: [amount<Double>]
```

A storm user can specify how much available CPU a machine has adding the following to `storm.yaml`:

```
supervisor.cpu.capacity: [amount<Double>]
```

Example of usage:

```
supervisor.memory.capacity.mb: 20480.0
```
Currently, the amount of CPU resources a component requires or is available on a machine is represented by point system since CPU usage is a difficult concept to define. Different CPU architectures perform differently depending on the task at hand. The point system is a rough estimate of what percentage of CPU core a task is going to consume. Thus, for a typical situation, the CPU availability of a node is set to 100 * # of cores.
CHAPTER 6: EVALUATION

6.1 Stela Evaluation

In this section we evaluate the performance of Stela (integrated into Storm) by using a variety of Storm topologies. The experiments are divided into two parts: 1) We compare the performance of Stela (Section 3.3) and Storm's default scheduler via three micro-benchmark topologies: star topology, linear topology and diamond topology; 2) We present the comparison between Stela, Link Load Strategy (Section 3.4.2), and Storm's default scheduler using two topologies from Yahoo! Inc, namely: PageLoad topology and Processing topology.

6.1.1 Experimental Setup

For our evaluation, we use University of Utah's Emulab [51] testbed to perform our experiments. Our typical Emulab setup consists of a number of machines connected via a 100Mbps VLAN. Each machine is set up to run a Ubuntu 12.04 LTS image, and has one 3 GHZ processor, 2 GB of memory, and 10,000 RPM 146 GB SCSI disks and connected via 100 Mbps network interface cards.

6.1.2 Micro-benchmark Experiments
Storm topologies can be arbitrary. Thus we created three micro-topologies of the kind that may be found inside larger topologies. These are the Linear Topology, Diamond Topology, and Star Topology. They are depicted in Figures 7a, 7b, and 7c, respectively. The settings for Star, Linear, and Diamond Topologies are listed in Table 2. Other work has used linear topologies for evaluation [30].

<table>
<thead>
<tr>
<th>Topology Type</th>
<th># of tasks per component</th>
<th>Initial # of executors/component</th>
<th># of Worker Processes</th>
<th>Initial Cluster Size</th>
<th>Cluster Size after Scale-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star</td>
<td>4</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Linear</td>
<td>12</td>
<td>6</td>
<td>24</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Diamond</td>
<td>8</td>
<td>4</td>
<td>24</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Page Load</td>
<td>8</td>
<td>4</td>
<td>28</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Processing</td>
<td>8</td>
<td>4</td>
<td>32</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1: Setting and Configuration

Figure 8a, 8b, and 8c present the throughput results for these topologies. For the Star, Linear, Diamond topology, we observe that Stela's post scale-out throughput is around 65%, 45%, and 120% better than that of Storm's default scheduler. For all micro-benchmark topologies, thus indicating that it is able to find the congested bolts and paths and prioritize the right set of bolts to scale out. For the Linear topology, Stela's scaling increases throughput by 45% -- this lower improvement is due to the limited diversity of paths, where even a single congested bolt can bottleneck the sink.

In all cases, Stela's post-scaling throughput is significantly higher than Storm's default scheduler. The improvement over Storm ranges from 45% (Linear) to 120% (Diamond). In fact,
for Linear and Diamond topologies, Storm's default scheduler does not improve throughput after scale-out. This is because Storm's default scheduler does not change executors and attempts to migrate all executors to a new machine. When an executor is not resource-constrained and it is executing at maximum performance, migration doesn't resolve the bottleneck as no new executors are created.

Figure 7: Layout of Micro-benchmark Topologies
Figure 8: Experimental Results of Micro-benchmark Topologies
6.1.3 Yahoo Storm Topologies: PageLoad and Processing

We obtained the layouts of two topologies in use at Yahoo! Inc. We refer to these two Topologies as the Page Load Topology and Processing Topology (these are not the original names of these topologies). The layout of the Page Load Topology is displayed in Figure 9a and the layout of the Processing Topology is displayed in Figure 9b.

We examine the performance of three scale-out strategies: default, Link based (Section 3.4.2 and [30]), and Stela. The throughput results are shown in Figure 10. We chose to compare the Least Link Load strategy with Stela since it is the most effective strategy among all Topology-aware strategies (discussed in Section 3.4.2). This is because link load based strategies reduce the network latency of the workflow by co-locating communicating tasks to the same machine.

From Figure 10, we observe that Stela improves the throughput by 80% after a scale-out for both Yahoo Topologies. In comparison, Least Link Load strategy barely improves the throughput after a scale-out and the default scheduler actually decreases the throughput after the scale-out. The Least Link Load strategy doesn't improve the performance much due to the fact that migrating tasks that are not resource-constrained will not significantly improve performance. The reason that Storm's default scheduler does so poorly in a scale-out operation is because it simply unassigns all executors and the reassigns all the executors in a round robin fashion that includes newly joined machines. This may cause machines with “heavier” bolts to be overloaded thus creating newer bottlenecks that are damaging to performance especially for Topologies with a linear structure. In comparison, Stela's post-scaling throughput about 125% better than Storm's post-scaling throughput – this indicates that Stela is able to find the congested bolts and paths and give them more resources.
Figure 9: Yahoo Topologies
Figure 10: Experimental Results of Yahoo Topologies

Figure 10(a): Page Load Topology

Figure 10(b): Processing Topology
6.1.4 Convergence Time

Section 3.2 stated that we wished to minimize interruption to the ongoing computation. For a given run involving a scale-out, we measure interruption by the convergence time. The convergence time is the duration of time between when the scale-out operation starts and when the overall throughput of the Storm Topology stabilizes. Thus a lower convergence time means that the system is less intrusive during the scale out operation, and it can resume meaningful work earlier. Figure 11 shows the convergence time for both Micro-benchmark Topologies and Yahoo Topologies.

We observe that Stela is far less intrusive than Storm when scaling out in the Linear topology (92% lower) and about as intrusive as Storm in the Diamond topology. Stela takes longer to converge than Storm in some cases like the Star topology, primarily because a large number of bolts are affected all at once by the Stela's scaling. Nevertheless the post-throughput scaling is worth the longer wait (Figure 8a). Further, for the Yahoo Topologies, Stela's convergence time is 88% and 75% lower than that of Storm's default scheduler.

The main reason why Stela has a better convergence time than both Storm's default scheduler and Least Link Load strategy is that Stela does not migrate running executors to new nodes, but instead creates new executors. Having executors stop their current execution and wait for spawning in their new location increases convergence time.
Figure 11(a) Throughput Convergence Time for Micro-benchmark Topologies

Figure 11(b) Throughput Convergence Time for Yahoo Topologies

Figure 11: Convergence Time Comparison
6.1.5 Scale-In Experiments

We examined the performance of Stela scale-in by running Yahoo's PageLoad topology. The initial cluster size is 8 and Figure 12 shows the throughput change after shrinking cluster size by 50\%. We initialized the component allocation so that each machine can be occupied by tasks from less than 2 components. For comparison, we test the performance of a round robin scheduler (same as Storm's default scheduler) for scale-in experiment. For round robin scheduler, half of the machines are randomly chosen to be removed from the cluster. We compare Stela's performance with other two groups of test using round robin scheme and we observe Stela achieves almost zero throughput post scale reduction while two other groups experience 200\% and 50\% throughput decrease respectively. Stela also achieves less down time than two other groups. This is primarily caused by the components chosen by Stela have low ETP in average thus they tend to locate upstream from congested components. Migrating these components will introduce less intrusion to the application by allowing downstream congested components to digest tuples in its queue and continuing producing output.
6.2 R-Storm Evaluation

In this section, we discuss how we evaluated the performance of our resource-aware scheduler. We will first present an overview of our experimental setup, followed by a comparison of performance comparison of the resource-aware scheduler versus the default scheduler of Storm measured on a variety of Storm topologies. We also evaluate the performance of our resource-aware scheduler on two sample Storm topologies modeled after typical big data streaming workloads being run in the industry.

6.2.1 Experimental Setup
We aim to evaluate our scheduling algorithm under a real working Storm setup scenario where a Storm topology is running on more than one server rack. We used Emulab.net to run our experiments. Emulab.net is a network testbed which provides researchers with a wide range of environment to develop, debug, and evaluate their experimental system.

In our Emulab.net experimental setup, the Storm cluster consists of a total of 6 Storm nodes, each with 3 slots, and 1 node called node-1 which is used to host the Nimbus and Zookeeper services across the cluster. To emulate the latency of inter-rack communication, we create two VLANs, with each VLAN holding 3 Storm nodes. The latency cost of the inter-rack communication is 4ms for a round trip time. Each node runs on Ubuntu 12.04 LTS with a single 3GHz processor, 2GB of RAM, 15K RPM 146GB SCSI disks, and is connected via 100Mbps network interface cards. Figure 13 illustrates a visual overview of our cluster setting in the Emulab.net environment.
6.2.2 Experimental Results

We evaluated the performance of R-Storm by comparing the throughput of a variety of topologies scheduled by R-Storm against that of the same topology scheduled by Storm's default scheduler. To be comprehensive in our evaluation, we use generic Storm topologies, as well as, actual Storm topologies deployed in industry in our experiments. For our evaluation, the throughput of a topology is the average throughput of all output bolts which tends to be farthest
downstream components in a Storm topology. Our experiments are run for an average of 15 minutes by which the throughput of the Storm Topology that is being evaluated should have stabilized and converged. We repeated each experiment for 10 times to make sure the standard deviation is trivial.

6.2.3 Micro-benchmark Storm Topologies: Linear, Diamond, and Star

To fairly evaluate R-Storm, we created Micro-benchmark topologies representing commonly found topologies, namely Linear Topology, Diamond Topology, and Star Topology. These Storm Topologies are representatives of the layout of the Storm Topologies as visually depicted in Figures 6a, 6b, and 6c respectively. The Linear Topology is similar to the evaluation topology of the related work on Storm scheduling [30]. To simulate various degrees of load, we do artificial workload which is done on each one of these components, with each component having a varying degree of parallelism. As an example, in the Linear Topology, the Spout was set to consume around 50 percent of CPU resources on a machine and each Bolt was set to consume around 15 percent CPU resources. Each component in the Linear Topology has a parallelism of 4 tasks each. The artificial workload is implemented via a function that searches for prime numbers given a range, while the amount of computation can be tuned by how large the input range is.

Figure 14, 15, and 16 compare the throughput of scheduling done by our resource-aware scheduler versus that of Storm's default scheduler for the Linear, Diamond, and Star Topologies, respectively. The performance of those Storm Topologies scheduled by our resource-aware scheduler is significantly higher compared to the scheduling done by Storm's the default scheduler.
As can be seen in the results, scheduling done by R-Storm provides on average of around 50%, 30%, and 47% higher throughput than that done by Storm's default scheduler, for the Linear, Diamond, and Star Topologies, respectively.

Figure 14: Experiment results of Linear Topology
Figure 15: Experiment results of Diamond Topology

Figure 16: Experiment results of Star Topology
6.2.4 Yahoo Topologies: Page Load and Processing Topology

We obtained the layouts of two topologies in use at Yahoo! Inc. to evaluate the performance of R-Storm on actual topologies used in industry. The layout of the Page Load and Processing Topology are depicted in Figure 8a and 8b. Figure 17 and 18 shows the experimental results for Page Load and the Processing topologies, with the graphs showing a comparison of the throughput for the modeled industry topologies scheduled using our resource-aware scheduler against Storm's default scheduler. As shown in the graphs, the scheduling derived using our resource-aware scheduler performs considerably higher than a scheduling by Storm's default scheduler. On average, the Page Load and Processing Topologies have 50% and 47% better overall throughput when scheduled by R-Storm as compared to Storm's default scheduler.

![Graph showing throughput](image)

Figure 17: Experiment results of Page Load Topology
Figure 18: Experiment results of Processing Topology

Figure 19 summarizes the evaluation results for all Storm Topologies we used during our experiments. In overall, R-Storm significantly outperforms Storm's default scheduler for all Storm Topologies we evaluated.
Figure 19: An Overview of evaluation results for all benchmark topologies
CHAPTER 7: CONCLUSION

Storm is an emerging open source technology in the field of Big Data which adds reliable real-time data processing capabilities and consumes streams of data and processes those streams in complex ways. The wide range of use cases Storm is expected to support and their relevant complexity make the evolution of Storm relatively challenging and push for general purpose new features able to fit to most use cases. In spite of its promising nature, Storm is missing several desirable features. One of them is elasticity within Storm clusters and the other is an intelligent scheduler.

We presented novel scale-in and -out techniques for stream processing systems. The system we developed called Stela improves the performance of stream processing systems by using a combination of analytics on both the processing graph and resource utilization. To improve throughput when scaling-out, Stela first selects congested processing operators to re-parallelize based on ETP. Afterwards, Stela will assign extra resources to the selected operators to reduce the effect of the bottleneck. For scale-in, Stela picks the machine with the lowest ETPSum and reassigns the tasks of that machine to other machines in the cluster starting with machines with lower ETPSums. Our experiments on both Micro-benchmarks Topologies and Yahoo Topologies show significant higher post scale-out throughput than default Storm and Link-based approach, while also achieving shorter convergence time. Our experiments also indicate that for scale-in, the post scale-in throughput of Stela is much better than when using a simple round robin approach.

The schedulers that come with Apache Storm schedule tasks in a round-robin fashion with disregard to resource demands and availability. We designed and implemented a system called R-Storm that implements resource aware scheduling within Storm that optimizes the performance of
the system by maximizing resource utilization. When scheduling tasks, R-Storm can satisfy both soft and hard resource constraints as well as minimizing network distance between components that communicate with each other. We evaluate R-Storm by running both Micro-benchmarks Topologies and Yahoo Topologies. We compare the results of the topologies scheduled by R-Storm versus the default scheduler within Storm. Our experimental results demonstrate that schedulings done by R-Storm perform far better than that done by the default schedulers of Storm.

7.1 Future Work

A future direction for our work in Stela, is to create a system, using techniques developed in Stela, which automatically scales in and out. Currently, Stela features on-demand scale-in and scale-out, however, a system that can automatically detect the need to scale-in and scale-out is much more convenient for the user. This direction of research requires us to develop more metrics to determine when there is such a need to scale-in or scale-out and based on this need what extent should the scale-in and scale-out be. There is existing work [23] in automatic elasticity in data stream systems. However, the existing work provides only simplistic techniques with marginal results.

In this paper we have evaluated R-Storm on clusters running a single Storm Topology. Although we have not evaluated the effectiveness of the scheduling of multiple topologies on a single multi-tenant cluster, we proposed a simple heuristic to address the issues. Our heuristic is based on the insight that R-Storm favors locality and tends to schedule the tasks of a single topology in close proximity to each other, leaving other parts of cluster free. Therefore, when scheduling a Storm topology in the presence of existing topologies in a cluster, schedule the new
topology farthest away in terms of network distance from where existing topologies are scheduled. Scheduling new topologies using this technique will likely result in the best performance. This approach spreads out the topologies within a single cluster and lessens the effect of topologies competing for resources. The implementation and verification of this heuristic is left for future work.

Another direction for future work is combining the techniques used in Stela for elasticity and resource aware scheduling techniques used and R-storm to create a comprehensive system that enables both elasticity as well as intelligent resource aware scheduling. In this system, we envision that integrating resource awareness in every aspect of our scheduling decision will augment the efficiency of creating elasticity. We have developed Stela to be more or less independent of the underlying hardware, which this design has advantages of its own. However, taking into account the availability of underlying resources and resource requirements to run an application, a system can have higher probability in making an optimal scheduling when scaling-in or scaling-out. Considering resource usage and availability can also enable the system to accurately determine when to scale-in or scale-out, thus automating elasticity.
REFERENCES

