
Congestion Control for Spatio-temporal Data in
Cyber-physical Systems
Hossein Ahmadi, Tarek Abdelzaher, Indranil Gupta

Department of Computer Science
University of Illinois at Urbana-Champaign

hahmadi2@uiuc.edu, {zaher, indy}@cs.uiuc.edu

Abstract—Data dissemination protocols in cyber-physical sys-
tems must consider the importance of data packets in protocol
decisions. Importance of data cannot generally be accurately
represented by a static priority value or deadline, but rather must
stem from the dynamic state of the physical world. This paper
presents a novel congestion control scheme for data collection
applications that makes two key contributions. First, packet
importance is measured by data contributions to the accuracy
of estimating the monitored physical phenomenon. This leads
to congestion control that minimizes estimation error. Second,
our protocol employs a novel mechanism, i.e. spatial aggrega-
tion, in addition to temporal aggregation to control congestion.
The protocol is generalized to multiple concurrent applications.
Our approach employs different granularities of aggregation in
transporting spatio-temporal data from nodes to a base station.
The aggregation granularity is chosen locally based on the
contribution of the transmitted data to the reconstruction of the
phenomenon at the receiver. In an area affected by congestion,
data are summarized more aggressively to reduce data transfer
rate while introducing minimal error to the estimation of physical
phenomena. We implement this scheme as a transport layer pro-
tocol in LiteOS running on MicaZ motes. Through experiments,
we show that the proposed scheme eliminates congestion with an
estimation error an order of magnitude smaller than traditional
rate control approaches.

I. INTRODUCTION

Traditional embedded and control systems typically close
loops around important physical phenomena. More recently,
wireless sensor networks emerged where the sensing function
is largely distributed and the emphasis is more on phenomenon
estimation, rather than control. From a cyber-physical per-
spective (where a key goal is to understand how couplings
between the cyber and physical realms affect system design),
sensor networks motivate analysis of how network protocols
that communicate sensor data affect phenomenon estimation
accuracy, and in turn how this knowledge can improve network
protocol design. Accordingly, this paper redesigns congestion
control functions in sensor network transport protocols to

Research was sponsored in part by Natural Sciences and Engineering
Research Council of Canada (NSERC), NSF Grant CNS 06-26342, and
by the Army Research Laboratory and was accomplished under Cooper-
ative Agreement Number W911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

account for importance of physical data. We show that by
accounting for the impact of communicated sensor data on
estimation accuracy in congestion control decisions, the error
in estimating aggregate phenomena can be reduced by as much
as one order of magnitude.

A sample wireless sensor network can be a set of wireless
nodes in a surveillance area that are equipped with appropriate
sensors to monitor temperature and humidity distributions.
The sampling can be performed with a fixed rate (e.g. once
every second). Each sample is called spatio-temporal since
it represents a value in space and time. Suppose that two
different applications transport temperature and humidity data
in a multi-hop fashion to base stations for analysis and
modeling. Congestion occurs when a node is not capable of
forwarding all the samples it receives to the next-hop node.

In our previous work [1], we proposed a transport protocol
with adaptive reliability, where the number of retransmis-
sions (of lost packets on an unreliable wireless medium) is
adapted based on the expected error in estimating a physical
phenomenon caused by the data loss. This paper significantly
differs from that work in two important respects. First, we
redesign congestion control functions, as opposed to reliability
and retransmissions. A new congestion control scheme is
designed and implemented for data collection networks that
maximizes estimation accuracy in the face of congestion.
While our previous work on reliability focused on probabilis-
tically (re)transmitting data to overcome link failures, here we
discuss the problem of controlling data flow through intelli-
gent aggregation. Second, our protocol is extended to handle
multiple concurrent applications of different importance. Our
prior work on reliability treated all traffic alike.

Many congestion control protocols have been proposed for
wireless sensor networks [2], [5], [8], [12], [17]–[19], [22],
[24]. Modifying the data generation rate is the main mecha-
nism that has been widely used in the transport layer. Routing
around the congestion is usually employed as a network layer
or cross-layer mechanism. Decreasing the data rate implies
reducing the number of spatio-temporal samples received by
the base station and therefore increasing the estimation error.
Previous efforts, motivated by layering concerns, incorporate
only limited knowledge of the real importance of a data
packet into protocol decisions. So, they cannot control the
accuracy of the estimation when decreasing data rate (and

thereby decreasing the number of spatio-temporal samples).
This means that even limited congestion on one node may
result in increasing estimation error considerably. Fairness is
traditionally provided by allocating the same bandwidth to all
concurrently running applications.

This work alleviates the above shortcomings by taking
estimation error into account, and allowing different applica-
tions to have different estimation errors depending on their
relative importance. The relative ratio of the estimation errors
of different applications is user-defined. In the special case,
the user can enforce that all applications experience the same
estimation error.

Finally, as alluded above, previous protocols resolve con-
gestion by decreasing source rate which forces the source to
either fall behind or do temporal summarization of data (i.e.,
send aggregates of samples at a lower rate). This temporal
summarization at the source is not efficient because it uses
no information about readings from other nodes (i.e., spatial
information). In contrast, we resolve congestion by using both
spatial and temporal information. Hence, we effectively allow
for better data compression. Our scheme is independent of
the type of space used in summarization, i.e. whether it is
abstract space (e.g. node ids) or physical space (e.g. node
locations), although we use abstract space aggregation in
this work. Summarization in space and time with variable
granularity is used as a tool to control the data transfer rate and
eliminate congestion. The degree of summarization depends
on the estimation error it contributes to the overall estimation
accuracy. Using least-error summarization, our scheme elimi-
nates congestion while incurring the least possible overall error
in sensing the physical environment.

We further show through analysis that our protocol has a
small processing overhead, enabling deployment on very CPU-
constrained motes. When several applications share the same
network, we prove that our scheme provides each with the
assigned share of the resources. This protocol is implemented
as a transport protocol in LiteOS on a testbed of MicaZ
motes. Through several experiments, we demonstrate that
our protocol eliminates congestion promptly while providing
weighted fairness. We implement two well-known congestion
control protocols in LiteOS and compare them against ours.
The results show that our protocol leads to a much smaller
estimation error at the base station.

The rest of this paper is organized as follows: In Section II,
we summarize the related work. Section III describes the
congestion control mechanism and system model used. In
Section IV, we formally validate our approach. Next, we
evaluate our protocol and compare it against other congestion
control protocols in Section V. Finally, we conclude the paper
in Section VI.

II. RELATED WORK

Congestion control is widely studied in general multi-hop
wireless networks and many protocols that are designed for
end-to-end data delivery [11], [21]. RCP [11] is designed for
wireless networks with heterogeneous interfaces, where the

receiver identifies lossy links and controls the transfer rate
in the source to achieve high throughput. Another work [21]
studies the main design issues in TCP variants such as the
window-based transmission and distinguishing between con-
gestion and link failure and proposes the ATP protocol. Such
protocols cannot efficiently be applied to data collection in
cyber-physical systems with many-to-one traffic.

Several efforts specifically address congestion control in
wireless sensor networks [2], [5], [8], [10], [12], [17]–[19],
[22], [24]. Such protocols can be divided two three classes:
i) protocols designed for node-to-node data transfer (e.g.
[10], [12]), ii) centralized rate control for many-to-one data
collection (e.g. [2], [5], [17], [19], [22]), and iii) distributed
rate control for many-to-one data collection (e.g. [8], [18],
[24]). We briefly review each category of related work and
explain why our approach is different at the end.

The first class of protocols are centralized rate control
protocols designed for node-to-node data transfer. STCP [10]
is a general transport protocol mainly designed for point-
to-point communication in sensor networks that allows the
base-station to control both reliability and data transmission
rate. Flush [12] is a reliable transport protocol that monitors
interference to control sending rate. It proposes a novel dy-
namic rate control mechanism that uses measured inference
information to calculate the best delivery rate.

Centralized rate control schemes for many-to-one data col-
lection are the second class of congestion control schemes.
Event-to-Sink Reliable Transport (ESRT) [19] assumes that a
fraction of sensor readings are enough to correctly identify
an event in the surveillance area. Thus, the base-station tunes
nodes reporting frequency such that the required information
is obtained with minimum energy spending considering one-
hop communication between nodes and the base-station. A
similar measure of reliability is proposed in PORT [25], where
a function of the received packet rate determines the reliability.
Using feedback from the base-station, a certain threshold on
packet rate is achieved while the total number of transmissions
is minimized. In [22], authors study the congestion control
problem not in the upstream direction, from sensor to sink,
but in the downstream direction, from sink to sensor and
they provide a rate control mechanism to reduce workload.
The real-time and reliable transport protocol [7] focuses on
several characteristics of different applications such as number
of packets received from the event and the delay constraint
of decision interval. Bian et al. [2] propose a protocol that
assigns sending rates to all sensors in the routing tree in a
centralized fashion. The rates are assigned based on the link
characteristics present in the routing tree. Paek et al. [17]
propose the rate controlled reliable transport protocol (RCRT)
where the receiver is responsible for detection and explicitly
determining sender rates. This provides flexibility to control
the rate allocation over multiple senders.

The third category of protocols are distributed rate control
schemes for many-to-one traffic. Congestion Detection and
Avoidance (CODA) [24] employs two modes to eliminate
congestion. In the back-pressure mode, a congested node

signals upstream nodes and pushes the congestion towards
the source. An end-to-end congestion control using ACKs is
another mode of congestion avoidance. A congestion control
scheme for tree-based data collection has been proposed [5].
The rate control is done in a distributed manner where each
node pushes the congestion towards the leaves by sending
a maximum transfer rate to the upstream nodes. The rate
is shared equally among upstream nodes and the process
continues. Hull et al. [8] argue that congestion control in
wireless sensor networks requires a range of mechanisms
acting on different layers of the protocol stack. They propose
Fusion, a combination of priority based media access control,
hop-by-hop flow control, and source rate control. IFRC [18]
is a distributed rate allocation scheme based on observed
interference from the link layer. Through local decisions, IFRC
maintains a fair allocation of medium to the contenders. To the
best of our knowledge, there is no congestion control scheme
that considers true importance of data packets in terms of
phenomenon estimation accuracy and provides an efficient yet
simple protocol that can be implemented on motes.

Data aggregation has been introduced for general sensor
network applications [9], [15]. Directed Diffusion [9] is a
data dissemination approach at network layer which allows
multi-path forwarding and aggregation of the data. Paths are
selected based on their latencies providing high efficiency
when routing through multiple paths. Data aggregation on the
other hand allows intermediate nodes to merge sensor data and
reduce the data transfer rate. The Tiny Aggregation Service
(TAG) [15] uses data aggregation in a querying service. The
sensor network is treated as a database where SQL-like queries
are performed to obtain data periodically. Previous work on
aggregation often breaks traditional end-to-end congestion
control semantics and congestion control schemes. None of the
previous efforts have studied variable aggregation granularity
for the purpose of efficient congestion control.

In real-time computing, several protocols have been pro-
posed for sensor network communication [3], [6], [13], but
they restrict themselves to different mechanisms for deadline
or priority enforcement. Some application semantics, such as
estimation error, do not lend themselves well to urgency-
based prioritization. New schemes are needed to decide which
packets to forward or how packet content is combined based
on physical-world state. “Cyber-physical” data dissemination
protocols (that consider physical-world state) have recently
been described to enhance the performance of wireless sensor
networks by utilizing physical-world knowledge about the
sensor data. In our previous work [1], we proposed one such
adaptive-reliability transport protocol. Based on the amount
of error in estimating a physical phenomenon, nodes locally
carry on a probabilistic retransmission scheme to achieve a
guaranteed expected estimation error. In the current paper. we
borrow the same protocol API and system model, but solve
the new problem of controlling congestion while minimizing
estimation error through intelligent and variable spatial and
temporal aggregation. We hope that this protocol will serve as
example for a new brand of protocols that address physical

listen

connect

a
CONNECT

CONNECT

Connection Table
PortBase Participating?

b
c 67

100
No
Yes

(b, 100)

(100)

b

Fig. 1. Connection setup phase.

world state and cyber-physical coupling in a wide array of
embedded network functions, beyond priority enforcement.

III. CYBER-PHYSICAL CONGESTION CONTROL

In data collection networks, the main challenge in designing
a cyber-physical congestion control scheme (i.e., one where
the coupling between the cyber and physical domains is
accounted for) is to eliminate congestion without significantly
increasing the global estimation error. This should be done
with very little communication overhead. Moreover, different
applications may have different accuracy requirements to be
maintained. We aim to provide weighted differentiation among
the applications based on user-defined accuracy weights. For
example, if accuracy of application A is twice as important as
accuracy of application B, then the estimation error weights
of the two applications can be set 2:1. It defines the statisti-
cally expected ratio of these errors to be maintained by our
congestion control scheme. Our congestion control achieves
this ratio while minimizing the absolute error by summarizing
data adaptively both in space and time.

Our approach is based on aggregation at each interme-
diate node. Each node sends an aggregate to its next hop
periodically. The output rate of a node is controlled by
summarizing the data to create smaller aggregates or averaging
aggregate values of different report periods. The main idea
of our protocol is to start with maintaining zero estimation
error (due to summarization) at every node by forwarding
every sensor reading to the base station. When congestion is
detected, nodes in the congested area are allowed to cause
some estimation error by reducing their data transmission to
eventually eliminate congestion. We are interested in finding
the minimal allowed error which is just sufficient to alleviate
the congestion.

In this section, we first present the system model used
in this paper. Next, we give an overview of the protocol
explaining connection management and operation in non-
congested situations. Finally, we discuss the mechanism for
congestion control and describe the details of our adaptive
summarization method.

A. System Model

Our congestion control components run locally on every
node as a part of the transport layer. Several monitoring
applications may run concurrently where for each application,
a node called base station is responsible for collecting the
data. The participating sensors perform the sensing and send
the measurements to the corresponding base station for pro-
cessing. Readings are aggregated at intermediate nodes and
are forwarded to the parent node. To support this scenario,
each application creates a transport layer connection. Each
connection uses a convergecast tree obtained from the under-
lying routing protocol to collect data from the participating
nodes. The tree is rooted at the base station and spans over a
connected subset of nodes including the ones participating in
monitoring as well as relay nodes. The connection is initiated
at the base station. The network layer invokes the transport
layer at intermediate hops as well as the destination.

Given this system model, congestion occurs when a node
cannot transmit its (aggregate) data values at the rate they are
generated. This happens if the bottleneck resource, such as
communication bandwidth from a node to its parent, cannot
accommodate the sending rate. Our protocol is agnostic to
the nature of the bottleneck resource. For example, in energy-
starved systems, congestion may be defined by the condition
when the average energy consumption constraint at a node
cannot accommodate the required sending rate. Using some
energy control mechanism (e.g. [4]), transmission is delayed
when budget is exceeded.

We represent a sensor measurement at a specific time and
location by a sampling point in space and time. In a monitoring
application, we expect the reconstructed physical phenomena
to have the same values as those sensed by nodes at the
corresponding time and location.

We use the following notation in the rest of this paper. For
any given connection, we denote the routing tree by T and the
base station by r. Let Tv be the sensor network subtree rooted
at node v. Also, let w1, . . . , wk be successors of node v in T .
Let Mv(t) = {mx(t)|x ∈ Tv} be the measured phenomenon
in the region covered by Tv at time t where mx(t) is the actual
reading of the sensor at node x. In our protocol, every node v
has an estimation of space-time data collected in Tz ⊆ Tv . We
define M̄v

z (t) = {m̄v
x(t)|x ∈ Tz}, to be the estimated values

of phenomenon in the region Tz and at time t which is present
to node v. m̄v

x(t) is the value that node v locally thinks that
x has measured. We formally define the estimation error as
follows:

Definition 1 (Estimation Error): Estimation error at node v
is defined as Ev =

∑
tj

∑
x∈Tv

(mx(tj)− m̄v
x(tj))2 where

tjs are sampling times.

B. Protocol API and Non-congested Operation

The transport-layer API adopted by our congestion control
protocol has previously been published in our own previous
work [1]. To make the current paper self-contained, we review
it below. Note that, we did not change the API for backward
compatibility reasons.

b

ACK

ACK

ACK
ACK

a

CONTROL

DATA

(b, 100, reading)

send_data send_control

(b, 100, paylod)

Fig. 2. Data and control packet send mechanisms.

Every connection in our protocol is represented by a base
station address and a port number. To initiate the connection,
the base station calls listen function provided by the
transport layer interface to listen to some specific port. Any
node willing to join the connection, calls connect with the
base station address and corresponding port number (Figure 1).
A connection table in each node keeps track of the established
connections that the node is aware of. We emphasize that
a node does not necessary participate in data collection for
all connections stored in its connection table. Some nodes
may simply serve as relay nodes. For each connection, the
connection table keeps the corresponding basestation address,
port number, and a flag to show whether the node itself is
collecting data for that connection.

The connect message is sent towards the base station.
It is processed at every hop and forwarded to the next hop.
If an intermediate node is not aware of this connection, the
base station address and port are added to the connection
table with the participation flag indicating that the node only
forwards messages in this connection. The connect message
also contains the sender address and location, in addition to the
basestation address and port number. The location is cached
at every hop towards the base station. The reason behind
forwarding the connect all the way to the base station is
to cache the location of the joining node at all intermediate
nodes. When received by the base station, an acknowledgment
is sent back to the source. The connection is closed when the
basestation calls a close function.

There are two different functions provided for sending data
to the base station: send_control for sending control mes-
sages, and send_data for sending spatio-temporal data to
the base station. As illustrated in Figure 2, send_control
uses hop-by-hop acknowledgments to reliably transfer control
packets to the destination (similar to [20], [23]). The structure
of a control packet is depicted in Figure 3. A flag in the mes-
sage header distinguishes this kind of messages from spatio-
temporal data messages. The header also stores source and
destination address and port number to distinguish between

Control Packet

Data Packet

Type

D BaseStation ID Spatio−Temporal Payload ...

C
Type

Source ID Destination IDPort # Payload ...

Port #λv uv

Fig. 3. Control and data packet structure.

different flows. When a packet is received from the network
layer, a selective ACK message is sent back to the previous
hop. The ACK message contains the port number and the
sequence number of the acknowledged packet. If the packet
is destined to the receiver, it is added to the receive buffer to
be fetched by the receive function. Otherwise, it is forwarded
towards the destination. This traditional approach supports any
end-to-end communication (i.e. sensor-to-sink, sink-to-sensor,
or sensor-to-sensor). Control messages form a small portion
of the total traffic and are often critical. Therefore, we do not
employ any congestion control mechanism for control packets.

The send_data function is responsible for transmitting
the majority of the traffic and uses a specific format for
its payload. This function is implemented differently from
previous work, which is how the contributions of this paper are
implemented. The payload contains an array of measurements
(for example, temperature) and the associated node IDs. At the
source, the sending application simply specifies its local node
ID. However, as we explain later in detail, each measurement
forwarded in the network may be attributed to more than
one source node because of aggregation at the transport
layer. Unlike the send_control function, spatio-temporal
data may not be directly forwarded towards the base station
depending on the next hop (Figure 2). If the next hop is
participating in the same connection (i.e. running the same
application), the send_data message is used to update the
local array of measurements at the next hop and the message
itself is dropped. Otherwise, the message is forwarded in the
same way as the control packets until it reaches a participating
node.

Formally, every node v, maintains M̄v
v as an array of values

of m̄v
w for every node w in Tv (we drop the time variable

to represent the latest value). Whenever a data message is
received by v, the corresponding data points in M̄v

v are updated
and the message is dropped. The measurements are propagated
at the next call to send_data at v where M̄v

v is first updated
using the local measurement at v given by the application.
Assuming no congestion, it then sends the whole array of
estimated data m̄v

v to the parent and waits for an ACK message
upon successful receipt of the packet by u. When an ACK
message is received, v knows that the estimated values in
u have been updated to M̄v

v and the send_data function
returns control to the application layer. The receive function
at the base station simply returns the M̄r

r .

C. Congestion Control Mechanism

The main objective of the congestion control mechanism is
to minimize the estimation error incurred at the base station
while providing ensuring a weighted allocation of error among
various applications running concurrently. A key idea here

return to the application

send_data Check
congestion

SummarizeSend
data packet

Underutilized

Send ADJUST_ERROR

Send ADJUST_ERROR

Congested

Normal

λv ← min{2λv, e∗}

Update M v
v

1
λv
← 1

λv
+ ρ

Fig. 4. Spatio-temporal data send mechanism.

is to control the error locally in a neighborhood so the
global error is minimized. Let ev denote the error between
observations at a node and the values available to its parent.
In traditional rate control approaches, the output flow of a
node is directly controlled by its transfer rate. However, in
our scheme, the output flow is indirectly controlled using
ev . The reason we use induced estimation error as a control
mechanism rather than directly controlling the output flow
is to manage the ultimate error contribution resulting from
congestion control. For presentation simplicity, we first assume
that all applications are equally important (i.e. have the same
accuracy weight). Later in this section, we show how different
weights are supported.

Our scheme assigns a value to each node v called maximum
tolerable error and denoted by λv . The major principle of the
protocol is to keep ev ≤ λv while minimizing output data rate.
Initially λv = 0 for all nodes. Upon detecting congestion, our
protocol increases λv until congestion is eliminated. There
are three components involved in this process (Figure 4):
(i) The congestion detection component, (ii) Error control
component which adapts λv to observed congestion conditions
such that the congestion is eliminated, and (iii) The adaptive
summarization component which finds the smallest summary
for which ev does not exceed λv , for any given value of λv . We
first discuss the congestion control components, then present
our summarization mechanism.

Congestion detection is widely studied in both wired and
wireless networks. In traditional wired networks, the conges-
tion can be easily detected by checking the output buffer size.
The network is congested if the buffer is utilized more than
a threshold. Wireless networks may need more sophisticated
mechanisms such as identifying channel idle time (e.g. the
mechanism proposed in CODA [24]). We treat the conges-
tion detection component as a black box so any arbitrary
mechanism can be used. At every call to the send_data
function, our protocol first checks with the congestion de-
tection component and determines the transport status at that
node to be congested, normal, or underutilized. The current
implementation simply uses thresholds on output buffer size.

After obtaining the status, the protocol increases or de-
creases λv in case of congestion or underutilization respec-
tively. To find the appropriate estimation error which is just
large enough to alleviate the congestion, we use a multi-
plicative (tolerance) increase, additive decrease method. When
congestion is detected at node v, λv is increased to 2λv .
However, this increase does not always guarantee a decrease

in output rate. For example if λv = 0, the tolerance level
would remain at 0. To solve this problem, the protocol first
examines what would be a reasonable increase in λv to have
an actual effect on the output rate. To do that, we consider
the aggregate value currently being sent using the old value
of λv . The protocol then computes the error introduced by
adding one level of summarization. Let e∗ be that error. Now,
we adjust tolerance level using

λv(t + 1) = min{2λv(t), e∗} (1)

In the case of underutilization, λv is modified as follows:

1
λv(t + 1)

=
1

λv(t)
+ ρ (2)

where ρ is a constant value protocol parameter. Now, one
can claim that when the appropriate estimation error is found
at the congested node v, we can locally use more aggressive
summarization without making any changes in the protocol
operation in other network parts. However, resources (energy
and bandwidth) are being consumed by nodes in Tv to deliver
error-free spatio-temporal data to v without knowing that this
accuracy will be wasted. Although nodes in Tv may not be
congested, their excessive resource usage will cause other
nodes sharing the media or other applications running on those
nodes to suffer. Therefore, the protocol informs all nodes in
Tv about the change in the amount of tolerable error at node
v and allows them to tolerate the same amount of error per
sampling point. An special ADJUST_ERROR message is sent
to all child nodes carrying λv . When receiving such a message,
each node compares λv with its own tolerance level and picks
the maximum.

In order to provide a differentiated service to different
applications, each application i is given an accuracy weight
αi. Let Ei

r be the estimation error at the base station for the
application i as defined in Definition 1. We design our protocol
in such a way that for any two applications i and j we have:

Ei
r

Ej
r

=
αi

αj

This is simply achieved by modifying λv when running
the congestion control scheme. Instead of λv , each node uses
λv/αi as the upper bound for ev and follows the rest of the
protocol as before. In Section IV, we show that this scheme
converges to the desired weighted error distribution among
various applications.

Internally to the transport layer, every packet contains the
the base station address and port number (Figure 3) to identify
each flow. The header also includes the value of λv at the time
of transmitting packet where v is the transmitter. uv is called
the upper bound on the estimation error of the payload and
defined as:

uv = max
j∈Tu

{|m̄v
j −mj |}

Finally, spatio-temporal payload is a summary of the array
of estimated data m̄v

v .

D. Adaptive Summarization
In our scheme, adaptive summarization is the process of

compressing the spatio-temporal payload to a smaller size
while satisfying the maximum tolerable error bound computed
above. This process is done at every call to the send_data.
Let us denote this summery by M̄u

v as this would be the values
that u estimates for nodes in Tv . There are multiple degrees of
summarization: a higher degree summarization means smaller
payload but larger estimation error. Specifically for n = |M̄v

v |
samples, we define log(n) summaries as follows: We take the
average of every consecutive pairs of values to obtain a set
of n/2 samples. This creates the first summarization of M̄v

v .
Continuing this process yields k-th summarization with the
size of n

2k . Next, we find the smallest summary which satisfies
the following criteria:

(m̄u
v −mv)2 +

k∑

i=1

∑

j∈Twi

[(m̄u
j − m̄v

j)2 + 2|m̄u
j − m̄v

j |uwi
]

≤ λv −
k∑

i=1

λwi (3)

To achieve this, we perform a binary search on log(n)
different summaries. We observe that, for λv = 0 only 0-th
summarization satisfies the condition (3). On the other hand,
λv can be so large that even sending a single value does not
violate (3). In this case, where spatial summarization no longer
reduces the data rate, we start averaging values over time and
sending one aggregate message instead of two. In particular,
the protocol defers sending any data packet to the parent until
the next call to send_data function while keeping the last
values that u has received from v. When u does not receive
any values from v, it uses the current values of M̄u

v .
Our scheme prefers spatial summarization over temporal

summarization because unlike temporal summarization, the
error introduced by spatial summarization can be calculated
at the time of sampling. To perform bounded-error temporal
aggregation, one needs to defer the summarization decision
to after multiple sampling intervals. Also, observe that while
more complex summarization could be used that introduces
different degrees of temporal and spatial summarization to
different data values, such complex techniques would require
appropriately complex metadata to describe what summariza-
tion was performed. The advantage of our scheme lies in the
simplicity of needed metadata as described next.

After summarization, λv and uv are added to the packet
header. In order to calculate uv , v uses the uwi values reported
in packet headers received from child nodes. In particular, v
uses to the following to calculate uv when composing each
data packet header:

uv = maxj∈Twi
,1≤i≤k{|m̄u

j − m̄v
j |+ uwi}

It can easily be verified that uv is greater than |m̄v
j −mj |

for any j ∈ Tu. After the data packet is composed, it is sent
to the output buffer and the control return to the application.

IV. ANALYSIS OF PROTOCOL PROPERTIES

Our proposed cyber-physical congestion control scheme
uses the local estimation error at a subtree to control the
data traffic. In this section, we first validate that this local
decision is sufficient to control the error globally. We ana-
lytically show that our proposed scheme can indeed provide
a controlled estimation error at the base station. Next, we
study the computational complexity involved in the adaptive
summarization process. We prove that the computational com-
plexity is O(log(log(n))), where n is the number of nodes.
This allows the protocol to scale as the network grows larger.
Finally, we prove that our approach successfully converges to a
weighted error allocation, where each application i experiences
an estimation error proportional to αi when the protocol
stabilizes.

A. Validation

The congestion control component in our protocol works
based the fact that the estimation error at each node v is
always less than or equal to λv . We first assume the single
application scenario and show that the proposed scheme for
adjusting summarization in a subtree respect the maximum
tolerable error. Formally, we prove the following theorem:

Theorem 1: The estimation error contributed from any node
v to its parent u is always less than or equal to λv .

Proof: We prove this theorem using induction on the
height of the nodes. The leaf nodes only store their own
measurement mv . Thus, the error contributed to their parents
are always less than λv as enforced by the protocol and the
theorem is trivially true for the leaf nodes. Now, we assume
that the data from child wi introduces an error not exceeding
λwi to v. In other words:

∑

i∈Twi

(m̄v
i −mi)2 ≤ λwi (4)

On the other hand, the error at data points in wi sent to u
can be expressed as follows:

∑

j∈Twi

(m̄u
j −mj)2 ≤

∑

j∈Twi

(|m̄u
j − m̄v

j |+ |m̄v
j −mj |)2

≤
∑

j∈Twi

(m̄u
j − m̄v

j)2 +
∑

j∈Twi

(m̄v
j −mj)2+

2
∑

j∈Twi

|m̄u
j − m̄v

j ||m̄v
j −mj |

Where the first inequality is based on |a−b| ≤ |a−c|+|c−b|.
By definition, |m̄v

j −mj | ≤ uwi . Using (4), we have:

∑

j∈Twi

(m̄u
j −mj)2 ≤

∑

j∈wi

(m̄u
j − m̄v

j)2 + λwi+

2
∑

j∈Twi

|m̄u
j − m̄v

j |uwj

According to adaptive summarization (3):

∑

j∈Tu

(m̄u
j −mj)2 ≤ (m̄u

v −mv)2+

∑

i=1

k[
∑

j∈Twi

(m̄u
j − m̄v

j)2 + λwi
+ 2

∑

j∈Twi

|m̄u
j − m̄v

j |uwj
] ≤

λv −
∑

i=1

kλwi
+

∑

i=1

kλwi
= λv (5)

This completes the proof.
From the above theorem we immediately conclude that

the estimation error at the base station is bounded by λr.
According to the proposed protocol, λr equals the maximum
tolerable error at the most congested node in the network.
Therefore, minimizing λv locally at the congested node simply
minimizes the total estimation error bounded by λr.

We can generalize the argument to multiple applications
with relative importance values of αi. Similar to Theorem 1,
we can show that the estimation error of application i con-
tributed to node u by node v is bounded by λv/αi. This can
be proved just by replacing λv with λv/αi. Therefore, the total
estimation error in the multiple application case is bounded by
λr/αi.

B. Computational Complexity

There are several steps involved in sending a data packet.
Although the sampling intervals of typical sensor networks
are usually long enough to allow complex processing, we
need to make sure that the protocol can easily scale when
the network size increases. The following theorem describes
the time complexity of our protocol:

Theorem 2: At every call to send_data function, our
protocol performs O(log(log(|Tv|))) summarizations.

Proof: First, note that the size of the complete sample
array is |Tv| at node v. Therefore, given λv , there are log(|Tv|)
different summarizations to choose from. However, since the
error of summaries are non-decreasing as the size decreases,
we can use binary search to find the minimum size summary
that satisfies our error constraint. Using binary search, the total
number of summarizations is O(log(log(|Tv|)))

We should note that the summarization itself is a linear
operation on the data packet. A same-order computation is
performed in any transport protocol to send and receive the
data packet itself (O(|Tv|)). So our protocol increases the total
computational cost from O(|Tv|) to O(log(log(|Tv|))|Tv|)
compared to previous approaches. Since the added term grows
very slowly with n, we conclude that the protocol can scale
well with increase in network size. On the other hand, the only
parameter that affects the protocol convergence is ρ. Using
a large value of ρ results in non-optimal solution while a
small value will slow down our protocol. Ideally, ρ is inversely
proportional to the number of applications.

C. Error Distribution

When running several applications on the same network, it
is desirable to have resources distributed among them based

on their relative importance. Let λi
v be the maximum tolerable

error computed by application i at node v. When using the
cyber-physical congestion control scheme, all the applications
using the network should incur estimation errors relative to
their given αi value. Formally, for every pair of applications
i and j and any node v, with estimation errors of Ei and Ej ,
we should have:

Ei

Ej
=

αj

αi
(6)

We first show that the maximum tolerable error at each node
converges to the same value for all applications as time passes.

Theorem 3: for every pair of applications i and j and any
node v, we have limt→inf

λi
v

λj
v

= 1
Proof:

According to the protocol we have:

1
λv(t + 1)

=

{
1

λv(t) + ρ non-congested
1

2λv(t) congested
(7)

When congestion occurs, we can write λi
v

λj
v

as follows:

λi
v(t + 1)

λj
v(t + 1)

=
λi

v(t)
λj

v(t)
(8)

On the other hand in non-congested operation, we have:

λi
v(t + 1)

λj
v(t + 1)

=
1

λj
v(t)

+ ρ

1
λi

v(t) + ρ
=

1 + ρλj
v(t)

1 + ρλi
v(t)

λi
v(t)

λj
v(t)

(9)

Given (9) and for ρ > 1, we have λi
v(t+1)

λj
v(t+1)

≥ λi
v(t)

λj
v(t)

if λi
v(t)

λj
v(t)

≤
1 and λi

v(t+1)

λj
v(t+1)

≤ λi
v(t)

λj
v(t)

otherwise. Thus, we conclude that λi
v

λj
v

converges to 1 as time passes.

We conclude that for every pair of applications λi
r and λj

r

converge to the same value as the protocol stabilizes. Since the
estimation error of applications i and j converges to λi

r/αi and
λj

r/αj respectively, we have:

Ei

Ej
→ λi

r/αi

λj
r/αj

=
αj

αi
(10)

V. EVALUATION

We evaluate our congestion control scheme using experi-
ments on an indoor MicaZ mote [16] testbed. In particular, we
study the estimation error under various network conditions.
Unlike traditional network applications where the performance
of a transport protocol is measured by throughput, estimation
error is the major performance metric of a sensor network
monitoring application.

First, in this section, we validate our protocols response to
congestion. Next, we study the distribution of the induced es-
timation error among several applications when they share the
network. Finally, we compare the performance of our protocol
against two previous approaches to congestion control. We find

ESRT [19] and RCRT [17] to be the best choice of protocols
to compare against. The former is designed for monitoring ap-
plications without having packet-level reliability requirements
while the latter is a flexible transport protocol with packet-
level reliability and applicable to any sensor network. In both
protocols, receiver is responsible for congestion control. We
do not compare to our own prior work [1], because that work
does not use congestion control.

A. Experimental Setup

We implemented our protocol in the LiteOS [14] operating
system using C++. LiteOS offers a Unix-like thread-based
interface for protocol implementation. The protocol API is
provided to higher level applications as a C++ class. The
transport layer uses a secondary thread to maintain receive
buffer, send acknowledgments and perform forwarding. We
run our experiments on 21 MicaZ motes deployed uniformly.
In our implementation, the transport layer buffer is 500 bytes
due to the limited memory available on MicaZ motes. Each
mote is assigned a predefined one-byte ID. We use a set
of fixed routing trees for different communication ranges.
The range is represented proportionally to the distance to
the nearest neighbor since the layout of sensors is a uniform
triangular mesh.

We implement a light monitoring application in LiteOS,
where the measured values are scalar. The application runs on
each node asynchronously and sends the measurements every
R seconds. R is called the sampling interval and is set to 5
seconds unless otherwise specified. We use the energy man-
agement module implemented for LiteOS [4]. However, we
only use the radio operation energy cost which is normalized
to one unit per transmitting one byte.

We implemented both RCRT [17] and ESRT [19] in LiteOS
in order to perform comparison experiments. Both protocols
use rate control for congestion management; however, they
have different reliability semantics. No spatial aggregation is
used in these protocols. The same application runs on top of
each protocol to report light measurements. Unless otherwise
specified, in order to stress all protocols, we use an average
non-congestion-induced loss of 50% for all links to emulate
an unreliable wireless medium.

For each experiment, the protocols run on the testbed for
10 minutes. Each experiment also runs 10 different times
and the average is reported. Motes record their own sensor
readings to the flash memory. The values returned by the
receive function at the base-station are also recorded. Let ri(t)
be the reading of mote i at sampling interval t recorded to its
flash memory. Also, let r̂i(t) be the value received by the base-
station similarly preserved in its flash memory. At each run,
the estimation error is obtained by computing the mean square
error over time between recorded readings and the values from
the base-station. This value is then divided by the total time
(120 intervals, 5 seconds each) and the number of nodes (20)
to calculate an average estimation error:

0 2 4 6 8 10
0

200

400

600

800

1000

1200

Application ID

A
v
er

a
g
e

es
ti

m
a
ti

o
n

er
ro

r

k=1
k=2
k=5
k=7
k=10

Fig. 5. Fairness of the adaptive aggregation congestion control (αi = 1).

1 2 3 4
0

100

200

300

400

500

600

Application ID

A
v
er

a
g
e

es
ti

m
a
ti

o
n

er
ro

r

k=2
k=3
k=4

Fig. 6. Distribution of the estimation error among concurrent applications
where αi = i.

Estimation Error =
∑120

t=1

∑20
i=1(ri(t)− r̂i(t))2

20× 120

Note that we present the absolute value of estimation error.
Hence, it should be used as a relative measure for the purpose
of comparison.

B. Protocol Validation

In the first experiment, we study how increasing the number
of applications affects their performance, given a constant
shared energy budget and equal weights (αi = 1) to all
applications in Figure 5. In practice, different applications
will focus on different sensor modalities. We start with one
application using an energy budget of 20 bytes per second.
In our system, it is more than enough for one application
to transfer all the data without loss. Therefore, the resulting
estimation error is zero.

As we increase the number of applications, k, a smaller
share of the budget is secured for each. This leads to more
estimation error as depicted in Figure 5. We observe that the
estimation error is increased proportionally to the number of
applications. Furthermore, the results verify that an increase
in the error is equally shared among different applications as
analytically predicted in Section IV.

Next, we evaluate how proportional differentiated service
is provided using different weights. We repeat the previous
experiment with αi = i and report the results in Figure 6.
Based on the values of αi we expect the first application to
have twice the estimation error of the second application, three

times of the third, and so on. Figure 6 shows that our protocol
roughly maintains estimation errors corresponding to the given
weight values.

C. Performance Comparison

Next, we compare performance of our protocol to others.
In our first comparison, we plot the average estimation error
when the wireless channel loss rate changes. The link loss
rate is changed by modifying the physical radio interface code
to deliberately drop packets. The rate varies between 0 and
87.5 percent and the estimation error is plotted in log scale in
Figure 7(a). Recall that the energy budget for all nodes is 20
bytes per second. Considering this, none of the protocol incur
any error with zero loss (i.e., fully reliable channels). Note
that, the curves in Figure 7(a) do not include points with zero
error since the y-axis is in log scale. One can conclude from
the figure that our protocol outperforms RCRT and ESRT by
3 times when links become more lossy. In this experiment,
the estimation error induced when using ESRT is not only
because of data-agnostic congestion control but also because
of the partial reliability it provides.

Next, we experiment with the effect of per node energy
budget on the performance of these protocols. As explained
in the experimental setup earlier, energy budget is represented
by the number of bytes a node can transmit per second. Since
the energy budget and channel bandwidth have the same effect
on protocol performance and considering the fact that the
energy budget can be easily controlled, we use it to study
how protocols react to more resource constrained situations.
We change the energy budget between 1 and 50 bytes per
second and plot the average estimation error in Figure 7(b).
The link loss rate is 50%. Again, y-axis is in log scale and as
before, our protocol outperforms others in the low budget case.
Observe that the estimation error remains constant when not
applying any congestion control mechanism. This is because
when links are very lossy, the high channel loss rate dominates
the smaller error introduced by congestion.

In our final experiment, we evaluate the protocols against
changes in communication range. Communication range is
changed by changing the transmit power in the sensors. The
minimum power considered as the unit range. In Figure 7(c)
we show how increasing communication range affects the
average estimation error. The communication range in this
plot is normalized based on the unit range and presented
as communication range ratio. As communication range in-
creases, fewer hops are required to deliver a packet to its
destination. This alleviates congestion. On the other hand,
the larger interference caused by increased range reduces the
effective bandwidth. This two-fold change causes the protocols
to have different reactions. Our protocol, not suffering much
from higher interference, keeps a steady performance while
others show significant increase in the error as they encounter
more collisions.

0 20 40 60 80 100
10

0

10
2

10
4

10
6

Link loss rate (%)

A
v
er

a
ge

es
ti

m
a
ti

on
er

ro
r

No control
ESRT
RCRT
Cyber-physical

(a)

0 10 20 30 40 50 60
10

0

10
5

Average energy budget (B/sec)

A
v
er

a
ge

es
ti

m
a
ti

on
er

ro
r

No control

ESRT

RCRT

Cyber-physical

(b)

1 2 3 4
10

1

10
2

10
3

10
4

10
5

Communication range ratio

A
v
er

a
g
e

es
ti

m
a
ti

o
n

er
ro

r

No control

ESRT

RCRT

Cyber-physical

(c)
Fig. 7. Comparing the estimation error of ESRT, RCRT, and Cyber-physical congestion control for various: a) channel qualities, b) energy budgets, and c)
communication ranges.

VI. CONCLUSION

We presented a novel congestion control mechanism for
accurate estimation of spatio-temporal phenomena in wireless
sensor networks performing monitoring applications. In our
model, the system is reconstructing a physical phenomenon
using sensor observations. The estimation error at the base
station is the main performance metric of the wireless sensor
network. Our protocol uses different levels of summariza-
tion to reduce data transfer rate while minimally impacting
estimation error. To the best of our knowledge, this is the
first work to employ adaptive aggregation as a congestion
control mechanism that minimizes estimation error of physical
phenomena. It is designed to easily scale with the size of
the network with the minimal communication overhead. We
implemented our protocol in LiteOS on MicaZ motes and
evaluated its performance through testbed experiments. We
showed that our protocol can promptly eliminate congestion.
It can also provide weighted fairness among multiple appli-
cations. Finally, we showed that our approach can result in
much more accurate estimation comparing to traditional rate-
control mechanisms such as ESRT [19] and RCRT [17]. In
particular, our protocol can transfer sensor data with 3 to 100
times less estimation error. This highlights that aggregation
can be used as an effective way of controlling transfer rate in
wireless sensor networks.

REFERENCES

[1] H. Ahmadi and T. Abdelzaher. An adaptive-reliability cyber-physical
transport protocol for spatio-temporal data. In RTSS’09, pages 238–247,
Washington, DC, Dec. 2009.

[2] F. Bian, S. Rangwala, and R. Govindan. Quasi-static centralized rate
allocation for sensor networks. In 4th IEEE Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON ’07), pages 361–
370, San Diego, CA, June 2007.

[3] M. Caccamo, L. Zhang, L. Sha, and G. Buttazzo. An implicit prioritized
access protocol for wireless sensor networks. In RTSS’02, pages 39–48,
Austin, TX, Dec. 2002.

[4] Q. Cao, D. Kassa, N. Pham, Y. Sarwar, and T. Abdelzaher. Virtual
battery: An energy reserve abstraction for embedded sensor networks.
In RTSS’08, pages 123–133, Barcelona, Spain, Dec. 2008.

[5] C. T. Ee and R. Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. In SenSys’04, pages 148–161, Baltimore,
MD, Nov. 2004.

[6] E. Felemban, C.-G. Lee, and E. Ekici. Mmspeed: Multipath multi-
speed protocol for qos guarantee of reliability and timeliness in wireless
sensor networks. IEEE Transactions on Mobile Computing, 5(6):738–
754, 2006.

[7] V. C. Gungor, Özgür B. Akan, and I. F. Akyildiz. A real-time and
reliable transport (rt) 2 protocol for wireless sensor and actor networks.
IEEE/ACM Transactions on Networking, 16(2):359–370, 2008.

[8] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in
wireless sensor networks. In SenSys’04, pages 134–147, Baltimore, MD,
Nov. 2004.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a
scalable and robust communication paradigm for sensor networks. In
MobiCom’00, pages 56–67, Boston, MA, Aug. 2000.

[10] Y. G. Iyer. STCP: A generic transport layer protocol for wireless
sensor networks. In IEEE Conference on Computer Communications
and Networks (ICCCN’05), pages 449–454, San Diego, CA, Oct. 2005.

[11] K.-H. Kim, Y. Zhu, R. Sivakumar, and H.-Y. Hsieh. A receiver-
centric transport protocol for mobile hosts with heterogeneous wireless
interfaces. Wireless Networking, 11(4):363–382, 2005.

[12] S. Kim et al. Flush: A reliable bulk transport protocol for multihop
wireless networks. In SenSys’07, pages 351–365, Sydney, Australia,
Nov. 2007.

[13] A. Koubâa, A. Cunha, M. Alves, and E. Tovar. Tdbs: a time division
beacon scheduling mechanism for zigbee cluster-tree wireless sensor
networks. Real-Time Syst., 40(3):321–354, 2008.

[14] LiteOS homepage. http://www.liteos.net/.
[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a

tiny aggregation service for ad-hoc sensor networks. SIGOPS Operating
Systems Review, 36(SI):131–146, 2002.

[16] MicaZ Data Sheet. http://xbow.com/Products/Product pdf files/ Wire-
less pdf/MICAz Datasheet.pdf.

[17] J. Paek and R. Govindan. RCRT: rate-controlled reliable transport
for wireless sensor networks. In SenSys’07, pages 305–319, Sydney,
Australia, Nov. 2007.

[18] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-
aware fair rate control in wireless sensor networks. In SIGCOMM ’06,
pages 63–74, Pisa, Italy, 2006.

[19] Y. Sankarasubramaniam, Özgür B. Akan, and I. F. Akyildiz. ESRT:
event-to-sink reliable transport in wireless sensor networks. In Mobi-
Hoc’03, pages 177–188, Annapolis, MD, June 2003.

[20] F. Stann and J. Heidemann. RMST: reliable data transport in sensor
networks. In 1st IEEE International Workshop on Sensor Network
Protocols and Applications (SNPA’03), pages 102–112, May 2003.

[21] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar. ATP:
A reliable transport protocol for ad hoc networks. IEEE Transactions
on Mobile Computing, 4(6):588–603, 2005.

[22] R. Vedantham, R. Sivakumar, and S. Park. Sink-to-sensors congestion
control. In Proc. IEEE International Conference on Communications
(ICC’05), volume 5, pages 3211–3217, Seoul, Korea, May 2005.

[23] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: a reliable
transport protocol for wireless sensor networks. In 1st Workshop on
Wireless Sensor Networks and Applications, pages 1–11, Atlanta, GA,
2002.

[24] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell. Coda: congestion
detection and avoidance in sensor networks. In SenSys’03, pages 266–
279, Los Angeles, CA, Nov. 2003.

[25] Y. Zhou, M. Lyu, J. Liu, and H. Wang. PORT: a price-oriented reliable
transport protocol for wireless sensor networks. In 16th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE’05),
pages 117 – 126, Chicago, IL, Nov. 2005.

