Delta-SimRank Computing on MapReduce

Liangliang Cao
IBM Watson Research Center
liangliang.cao@us.ibm.com

Brian Cho Zhen
University of lllinois at
Urbana-Champaign

bcho2@illinois.edu

ABSTRACT

Based on the intuition that “two objects are similar if theg ae-
lated to similar objects”, SimRank (proposed by Jeh and Wido
in 2002) has become a famous measure to compare the siyilarit
between two nodes using network structure. Although SinkR&an
applicable to a wide range of areas such as social netwat&span
networks, link prediction, etc., it suffers from heavy cartgtional
complexity and space requirements. Most existing effartad-
celerate SimRank computation work only for static graphs @m
single machines. This paper considers the problem of camgput
SimRank efficiently in a distributed system while handlirygnam-

ic networks which grow with time. We first consider an abdtrac
model called Harmonic Field on Node-pair Graph. We use this
model to derive SimRank and the proposed Delta-SimRanlgtwhi
is demonstrated to fit the nature of distributed computing) @n

be efficiently implemented using Google’s MapReduce pgradi
Delta-SimRank can effectively reduce the computationat emd
can also benefit the applications with non-static netwankcstres.
Our experimental results on four real world networks shoat th
Delta-SimRank is much more efficient than the distributexh-Si
Ranéf algorithm, and leads to up to 30 times speed-up in thie bes
casg.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithm

Keywords
SimRank, Delta-SimRank, Distributed Computing

1Source codes are provided at

pi Kachu.ifp. uiuc. edu/ ~nt sai 2/ delta_si nr ank/

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

BigMine' 12, August 12, 2012 Beijing, China

Copyright 2012 ACM 978-1-4503-1547-0/12/08 ...$10.00.

Hyun Duk Kim,
University of lllinois at
Urbana-Champaign

hkim277@illinois.edu

University of lllinois at
Urbana-Champaign

zhenli3@illinois.edu

Min-Hsuan Tsai
University of lllinois at
Urbana-Champaign

mtsai2@illinois.edu

Indranil Gupta
University of lllinois at
Urbana-Champaign

indy@illinois.edu

Li

1. INTRODUCTION

As social community websites (including Facebook, Twjtfaro-
ra, Groupon, etc.) have become increasingly popular, itless
more and more important to measure similarities betweerotwo
jects with network structures. The problem of measuringfisir-
ity” of objects arises in many applications: to predict whigser
might be a potential friend, to recommend music or videoaus ¢
tomers, and to promote sales of products to specific useipgrou
To accomplish these goals, it is no longer enough to just imaie
subject with the limited user profiles; it is more preferatdeex-
plore the rich resource of the network structure. Intulgiva video
might be interesting to a user if he likes another movie thatrn-
ilar. Two people might want to know each other if their frisrate
similar.

To explore the network structure to measure object sinylari
Jeh and Widom [12] proposed SimRank to measure the sirgilarit
between two nodes in the network. SimRank is based on the idea
that “two objects are similar if they are related to similéjects.”
Compared with other domain-specific measures, SimRanKklysua
yields the best performance in network context. SimRanlkbeas
successfully used for many applications in social netwdridud-
ing citation networks[[17], and student-course networHs [Bis
also applied to social annotatidn [3], information reteikj4], and
link prediction [18].

Despite its effectiveness, SimRank is very expensive toptden
in two aspects. First, the time complexity of computing SamRis
huge. It might take about 46 hours to compute the SimRank mea-
sures in a synthetic network with 10K nodes on a single machin
[19]. Second, when the network is large, it will require a éug
amount of memory to compute SimRank, which is often beyond
the ability of a single computer. For example, for a grapthwiv
nodes, several TB memory is needed to cache all the SimRank s-
cores. Although there have been quite a few works to imprioge t
SimRank algorithm, these works were all intended for siroghe-
puters[[2[19 117,18, 26]. and thus are confined to single mathi
computational power and memory limits.

In the era of Internet, searching engines and social contgnuni
service are built on distributed architectures. GooglespReduce
[6] is a popular paradigm in these settings for large-scafapu-
tations. In this study, we aim to design an efficient algonitto
compute SimRank on MapReduce. We first present a distribut-
ed implementation of SimRank on MapReduce. We show that the
use of a distributed system makes it possible to compute &ikR
in large networks. Our first algorithm greatly reduces thghhi
computational cost and memory requirement, at the costtsf lo
of data transfer in the distributed system. To further imprthe

pikachu.ifp.uiuc.edu/~mtsai2/delta_simrank/

performance, we design a new algorithm for distributed aatmp
ing. To understand our new model, we will introduce an alostra
model, named Harmonic Field On the Node-pair Graph (HFONG),
which provides a general model to analyze the evolvementaén
pair similarities. We introduce a special case of HFONG, @@m
Delta-SimRank, and prove that the problem of computing SiniRk
in a network can be transformed to Delta-SimRank. Compared
with original SimRank, Delta-SimRank fits better in the smén
o of distribute computing as it leads to less communicatraffit
and faster speed. In addition, Delta-SimRank can be usedotor
only static graphs but also dynamic graphs whose nodes ajgsed
keep increasing. Our experimental evaluation on four ratdskts
validates the success of Delta-SimRank on distributecayst
Following are the contributions of this study: (1) We first-im
plement SimRank on MapReduce and find that the bottlenesk lie
in huge network loads. (2) We introduce harmonic field analys
on node-pair graphs, which gives rise to the new Delta-SimhiRa
algorithm. (3) We prove that Delta-SimRank enjoys quitea fe
nice properties, which lead to an efficient algorithm on MapR
duce to compute SimRank scores not only on static graphddmut a
on graphs with increasing number of nodes and edges.

2. PROBLEM STATEMENT

SimRank [12] is a link-based similarity measure. Unlikeasth
similarity measures such as Euclidian distance which amgcted
using object attributes, SimRank suggests a complementary
larity metric which is applicable in any domain with relatghips
between objects.

We consider a grapt¥(V, E) that consists of a set of nod&s
and a set of linksE. A link from node a; to a2 is denoted as
(a1,a2) € E. For a nodes, we usel(a) = {b € V|(b,a) € E}
to denote all the nodes that have a linkatcand call these the in-
neighbors ofa.

In SimRank, the similarity between two nodes (or objeatajd
b is defined as the average similarity between nodes linkel avit
and those witlh. Mathematically, assigning(a, b) as the similari-
ty value between node andb, we are looking for a stable solution
on the graph which satisfies

1 ifa=0>
s(a,b>:{ ifa

o . 1
T Secrtaaerm Sed) ifazt, O

whereC is a decay factor satisfyingg< C < 1.

In practice, SimRank is computed in an iterative manner.dben
ing s*(a, b) as SimRank scores at iterationdeh and Widom [12]
initialize the SimRank scores as

&@w:{é

and then updated usingl (1). The update process will fakera-
tions, and the fina¢” will converge to the similarity value ifi{1).

Note that computing SimRank directly usirig (1) is very expen
sive. At first glance, SimRank computation looks like the das
PageRank algorithm_[22] since they are both iterative dlgas
running on graphs. However, computing PageRank is a muéh eas
er task since we can finish one iteration of PageRank by nsill
the edges in the graph once. Given a graph timodes andD
edges, the time complexity of computing PageRar®(®) and a
space complexity i©(N). In contrast, computing SimRank by it-
eratively evaluating{1) leads to a time complexity@fN*) in the
worst case and the space complexitydfN?). As a result, how to
compute SimRank in large scale graphs remains an unsoleed pr
lem.

ifa=1b

T @

Algorithm 1: A naive implementation of SimRank Algorithm on

MapReduce

Input: GraphG, initialized s°
1: fort=0: T-1
2: Map Function((a, b), s'(a, b))

5 (a,

3 finda, b’s neighborl (a) andI(b) respectively

4 for eachc € I(a), d € I(b)

5 output(c, d), s*(a, b)

6: Reduce Function (Key = (c,d), Values = vs[])

7: ifc=d

8: st (c,d) =1

9 else

10 s, d) = len%s)sum(vs)

1

output(c, d),s**(c, d)
Output: updateds”

3. A NAIVE IMPLEMENTATION OF SIM-
RANK ON MAPREDUCE

Our goal is to speed up SimRank computation on large networks
that cannot be efficiently processed in a single machine,iig-d
ing both the computation time and memory requirements at¢hes
multiple machines. To achieve our goal, we develop algorithin-
der the MapReduce framework. MapReduce is attractive lsedau
runs computations in parallel on a large cluster of machiwbde
handling details such as data distribution, fault-toleeatoad bal-
ancing, etc.

In order to use the framework, programs are written as map and
reduce functions. Map functions are run in parallel on eah qf
the input data. The resulting output is key-value pairs.hgsr is
sent, in most cases over the network, to a reduce processiaaro
to its key. Each reduce process then groups values of the leame
and runs the reduce function over these values to produdatie
output.

Algorithm[d shows our first algorithm of computing SimRank on
MapReduce. The key of the map function is a pair of nodes éenot
as(c,d), which is called a node-pair for brevity. In map function,
each SimRank score(a, b) is distributed to all the neighboring
node-pairs corresponding to the key of node-gaikl). In the re-
duce function, the new SimRank scori, d) is updated by sum-
ming up all the values passed to node-gdaird). The MapReduce-
based SimRank algorithm has two advantages. On one hand, the
computation is distributed to multiple machines. Moreotiee re-
quired size of memory is greatly reduced.

However, we should realize that such a naive implementation
has its limitations. Each mapper needs to sef{d, b) multiple
times to the reducer. For a graph with nodes, supposg is the
average number of neighbors to which a node is connectedamwe c
estimate the amount of data transferred from mappers tacegsiu
asO(p*>N?). Mapper and reducer processes are very likely to exist
on different machines, so the huge amount of data transfesclea
mappers and reducers will slow down the entire distribuyestesn
and even result in many 10 errors.

To alleviate the burden of computing SimRank, this paper de-
velops Delta-SimRank, a new algorithm with less data temesfid
faster speed in distributed systems. Next we will start lsguising
an abstract model named Harmonic Field on the the Node-pair
Graph(HFONG), from which we will gain good insights into Ezel
SimRank and make our algorithm easy to understand.

4. HARMONICFIELD ON NODE-PAIR GRAPH

We first review the node-pair graph representation [12],cihi Example 1: Ifwe letf? = 1 = [1,1,....]” in HFONG, we can
provides an alternative view for graph similarity. GivAhsubjects analyze the SimRank function as
in the original graphG = {V, E'}, we construct a node-pair graph .
G*? = {V? E*} with N? nodes. In the node-pair graph, each node i (z) = { 1 . ifzel ®)
denotes one pair of subjects of the original graph. For examp Zye!(w) way f'(y) ifzel.
one nodaxb in G* corresponds to a pair of nodesandb in G To From the discussion of HFONG we get the converged score
embed the neighborhood information, we construct the rpade-
graph in the following way: IrG?, there is an edgéub, cd) € E? £, = (I —Wyu) "Wl 9)
if (a,c) € Eand(b,d) € E.

X _ T
Suppose each node irh € G? corresponds to a non-negative Example2: For another example, we assufile= 0 = [0,0,]".
value f(ab). We call such valuesode-pair scores. By using the 1@ SimRank scores are thus updated according to
notation of the node-pair graph, we can rewrite the SimRgnk u 1 0 ifrel
dating step as [(@) = { D ¢ el (10)
yel(x) way f'(y) ifzelU.
1 ifa=1b i i
ft+1(ab) _ . P) From the discussion of HFONG we get the converged score
e Sisertan F(04) ifa#b.
[T(@)[[1(6)] 2ij€I(ab) £ = (1 — W)~ Wt = 0 (11)

Starting from [[B), we study a more general model. Suppose the
nodes in aG? are separated into two disjoint séfsand L satisfy-
ing V2 = U J L. Lettingz or y denote a node iG?, the general
model can be written as

It is easy to see the difference between Example 1 and 2: the
node-pair scores in Example 1 generally converge to a nam-ze
vector, while the scores in Example 2 will converge to zerextiN
we will show Example 2 corresponds to an important model mhme
£ () = O(x) ifeel @ Delta-SimRank and its properties are preferred in distethcom-

T X Way fiy) ifx €U, puting.

wherel (z) denotes the neighboring nodeswtv.., is a weight be-

tweenz andy, and f°(x) satisfies) < f°(x) < 1. Herel stands 5. DELTA-SIMRANK

for the set where node-pair scores are fixed, &rid complemen- Now we consider the representation in the original graph cor
tary to L. In U, a node-pair score is updated as the the weighted responding to Example 2 in the last section. Suppose V?
average off in its neighborhood. Such a functiofis called a corresponds to node b in the original graph, ang corresponds to
harmonic function[[7]. We name the model i (4) as ke monic nodec, d. LetL = {aala € V}, U = {abla,b € V,a # b}, and
Field On Node-pair Graphs (HFONG). HFONG is related to Zhu C

et al's semi-supervised learning model][28]: if we vie¥ as a Way = Wab,cd = W,

graph in whichL is labeled withf°, andU is not labeled, then the

process of updating is similar to the process of finding the opti- then we can write Example 2 in a new form

mal labels ofU. However, Zhu’s work aims to estimate the discrete

. : ; . . 0 ifa=15
labels, while our goal is to estimate the harmonic functietween A (a,b) = { .
Oand 1. (a.6) T TE) Socer(ay,acrn A (c,d) if a #b.
An important property of the HFONG iffj(4) is that, due to the (12)

maximum principle of harmonic functions [2B][7], it will coerge

to a unique solution. It is easy to find the analytical solutid the We call the model as Delta-SimRank and(a, b) as the Delta s-

converged value. Suppose we organize the scoré&anto a long core at iteration. Both Delta-SimRank and SimRank are examples

vectorf, and the corresponding vectors bhand L aref, andf;, of HFONG. However, Delta-SimRank has some unique progertie
£ which make it attractive for distributed computing. We wdiscuss
respectively, withf = fl . Note thatf; = f? is a vector which these properties in the following.

remains unchanged during the iterations. Letfifigoe the weight
matrix with each elemeni,, , we can spliti into four blocks

over the set of/ andL by W = { W Wi] Then [3) can

Wul Wuu
be written in a vector form

PROPERTY 1. The computation of SmRank can be solved by
the use of Delta-S mRank.

ProOOFE If we initialize

A'(a,b) = s (a,b) — s°(a, b), (13)

f, 5
! ! ®) then it is easy to see that (we first considet b):
fu — Wyufu + Wity (6)
C _
t+1 _ t t—1
When the HFONG converges, we halie= W, fu + Waufi, A7 (a,b) = 11(a)[[1(b)] Y. sed) =5 (cd)
which leads to c€l(a),d€I(b)
(14)
£, = (I — W) ' Wufi. (7)
= % Zst(a d) _ % z:st—l(c7 d)
Note that the convergence values will be the same even dubjec [1(a)[[1(b)] ¢, d [(@)[[1(b)] c,d
different initialization. ot t
. . . =s""(a,b) —s'(a,b)
We cannot usé{7) directly to compute SimRank because gplvin
linear equations directly ifi{7) is too expensive for largéworks. Note that this condition holds even for= b.

However, we make use of Eq[](7) to analyze the following two
examples of HFONG. A" a,a) = 5" (a,a) - s'(a,0) =1-1=0 (15)

Then we can transform the problem of computing SimRank to the
problem of updating Delta scores:

TP
@O, 2
s"Ta,b) = s'(a,b) + A" (a, b)
O

A" (a,b) Alle,d), ifa#b

Note that [IR) in fact models the change of SimRank, which is
the reason for the name Delta-SimRank.

PROPERTY 2. If the initialized A'(a,b) > 0 for all possible
node-pairs, then these Delta scores keep non-negative for all itera-
tions.

ProOOF We first consider Delta score in the second iteration.

2 — L 1 ‘
A7) = o) cem),deuwA 0
C
> @) ’

c€l(a),deI(b)
=0.

Similarly, we can prove\’(a,b) > 0 holds fort = 3,4,---. O

PROPERTY 3. After someiterations of updating, Delta-SmRank
SCores converge to zero.

PrRooFR Considering Ed.{11) in the last section, we can see that

Delta-SimRank scores will converge@ [

Table 1: The evolvement of similarity score between Univ and
Prof B

iterations: 3 4 8 9 10
SimRank: 0.128 0.128 --- 0.128 0.132 0.132
Delta-SimRank:| 0.128 0 0 0.004 0

To get an intuitive understanding of Delta-SimRank, we use a
toy example shown in Figufé 1, and observe the similaritwbeh
nodes. This example was also used in Jeh and Widom'’s fader [12
and we employ this example to study the differences betwéan S
Rank and Delta-SimRank.

ProfA StudentA

o -0

Univ (
o—0

ProfB StudentB

Figure1: A toy network used in origin SimRank paper.

Table[illustrates the evolvement of the SimRank score and
Delta score between University and Professor B in the toyot
For this example we set decay factér= 0.8 as in [12]. Note that
using a small decay factor will lead to faster convergenceant
Table[1 we can see that in a lot of iterations the Delta scazeris

20 * * * * * * * * * *

15 —k— num of simRank scores to update

—=©&— num of non-zero Delta scores

10

iteration
X

Figure 2: Updating A on thetoy network in Figure[ll

Algorithm 2 : Computing Delta-SimRank on MapReduce

Input: GraphG, initialized A*

1: Map function((a,b),A*(a, b))
ifa=0borA'(a,b) <e

return
finda, b’s neighborI (a) andI(b) respectively
for eachc € I(a), d € I(b)

output(c, d), WA%@ b)

. Reduce function (Key = (c,d), Values = vsl[])
ifc=d

outputA™t(c,d) = 0
10: else
11: outputA**! = sum(vs)
Output: updatedA®+!

Figure[2 shows the evolvement of non-zero Delta-scoresen th
toy example. We can see that for this toy example, the siityilar
scores between different nodes converge at different spe®d-
mall number of Delta-SimRank values are zeros. If we compute
SimRank scores directly, we need to re-compute the paie-giia-
ilarity for all nodes. In Algorithm 1, the SimRank scores gemer-
ally non-zero and all the scores should be sent from mappees t
ducers. However, in Delta-SimRank, we send only non-zertaDe
scores to reducers. In other words, we need only transfaerdhe
zero data across the MapReduce system and communicatfion tra
is lower. Based on the above discussion, we can seectiat
pared with SimRank, Delta-SimRank is more efficient to cotapu
on MapReduceln the next section we will discuss how to design
the distributed algorithm for Delta-SimRank.

6. DELTA-SIMRANK ON MAPREDUCE

In this section, we first discuss how to implement Delta-SamiR
in eq.[12) efficiently on MapReduce, and then propose arfaste
lution of SimRank.

Algorithm 3 : An efficient approach to compute SimRank

Input: : GraphG, init SimRanks®
1: Update SimRank using Algorithm 1 and obtain
2: Init Delta-SimRank byA! = s — °
3: fort=1:T-1
: updateA™!-SimRank as in Algorithm 2.
5: s =gt 4 Al
Output: updated SimRank scotd’

Algorithm[2 describes our implementation of Delta-SimRank

while most of the SimRank score is a non-zero value. SimRank MapReduce (single iteration). Delta-SimRank shares aflsinoi-

value keeps increasing in some iterations while stayindnanged
in some other iterations.

larities with SimRank in Algorithm 1, since both of them axam-
ples of HFONG. However, there are two significant differenice-

tween AlgorithnT2 and Algorithm 1. First, Delta-SimRank cke
whetherA’(a, b) < e before sending the data to reducers. This will
significantly reduce the amount of the data transmissioradifi-

tion, Delta.-S|mR§nk pre-computes the coefﬁm% inthe

map function. Since only non-zerh are sent to the reducer, the
size of neighborhood (c)||I(d)| is no longer equal to the length

of vs and need to be pre-computed. In the implementation, we can
store|I(c)| into a separate file and need not compute them in the
map function.

The communication traffic of Delta-SimRank is lower thanttha
of SimRank. Suppose there are orly non-zero Delta scores,
then the data transferred from mappers to reduceggig). In
contrast, we have discussed in Section 3 that the load of &R
is O(p>N?). When the communication traffic is low, distributed
system will suffer less from transmission errors which Hertim-
proves the system efficiency.

Based on Algorithnil2, we can design a new efficient algorithm
for SimRank. Intuitively, the new method does not recomphbee
SimRank scores of the nodes that have already convergeftdost
on the nodes whos&' are non-zero. Our algorithm is summarized
in Algorithn{3.

Next we discuss some implementation issues for Delta-SitkRa

Rounding Errors: Although we have proved that SimRank can
be exactly transformed into a Delta-SimRank problem (rebpP
erty 3), in practice there might exist rounding errors siimcAlgo-
rithm[3, we use\ < ¢ as the condition to check whetharis zero.

To analyze the effects of rounding errors, we consider thewing

property:

PROPERTY 4. If max,, Af(a,b) < ¢, we can estimate the up-
perbound of A*(a,b) after to iteration by max, , A" (a,b) <
C'oe.

We omit the details of the proof due to space limited. Based on
this property, we can see that the rounding error will desgemith
more iterations withC' < 1. In practice, we use = 10~ in our
experiment, and the rounding error will be negligible in rafthe
applications.

Number of Iterations: How to select the number of iterations is
an important problem. Jeh and Widom[12] empirically sugggs
chooseTl’ = 5 with a decay factot” = 0.8. However, Lizorkin et
al. [18] showed thaf” = 5 is not enough to obtained a converged
solution. They suggested to use a lar@eor a smaller decay fac-
tor. From all our experiments, we observed that wiiér= 0.4,
Delta-SimRank scores become all zeros within 8 iteratiasch
means SimRank converges. On some datasets it converges eve
faster (within 5 iterations).

Input Distribution: In our algorithm, each mapper need not ac-
cess the whole adjacent matrix. On the contrary, the negessa
formation is limited to the neighbors of a given node-pairs &
result, the input distribution is easy for sparse graph. @ight
argue that the size of neighborhofdc)| or |1(d)| requires going
over all the nodes in the graph, however, such neighborhized s
could be computed before hand and then saved @{tly) space.
As a result, our model is fit for the distributed computing.

7. EXPANDING GRAPHS

In real life and Internet communities, networks are rarédyis.
People might get to know new friends, or have new collabosato
social media communities such as Facebook or Twitter acasmm
date new users every day. To model those networks, we define
an expanding graph as the graph in which the number of nodes
or edges keeps increasing. To compute the SimRank scores in a
expanding graph, a straightforward way is to update thecadja

207

—©— computation with old SimRank score

15 —#— computation with expaned graph only

10}

changes of SimRank scores

_5 ,
10
iteration

Figure 3: Delta-SimRank on expanded graph can converge to
the solution faster

matrix and compute the scores from a fresh start. Howevir, th
naive way neglects the scores computed in previous stagessa
not efficient enough for real life applications. In this seet we
will use Delta-SimRank to develop an efficient way of compgti
SimRank scores in expanding graphs.

Suppose the old graph @ = {V°'?, £°}, and the new graph
is G = {V,E}. To guarantee that the graph is expanding, the
constraint satisfieg°'? C E, V°'4 C V. In general cases, the
number of newly added nodes or edges is relatively small enetp
with the size ofG°'?. To compute the SimRank scores 6 a
naive way is to re-compute SimRank again. However, with®elt
SimRank we can employ the information from the old graph to
speed up the computation. Suppa$¥ is the SimRank score on
G°'4, we can get the corresponding initialization @rby

o s (a,b) if a,b€ Vo (a,b) € B
s (a,b) = 1 if a=baecV,a¢ Vo
0 otherwise.

Then we can use™™ as the initialization on grapty’. Based on
the discussion of HFONG, it is not difficult to see this inlization
will also converge to the ground-truth SimRank scores. Hare
s s close to the SimRank scores so that we might get a better
estimation for Delta-SimRank.

After one iteration of SimRank frora’***, we obtains*. Then
we can initialize Delta score ! (a, b) = s* —s***, and proceed
Delta-SimRank algorithm. Note that the initialized valsaigood
initialization so thatA will converge to zeros faster. To show the
effectiveness of our algorithm, we employ a toy example with
Qubgraph with 99 nodes from Facebook network, expand thehgra
by adding a new node. Figuré 3 compares the speed of coneergen
using traditional method and using our new algorithm. Obsip
our new algorithm is fit for expanded graph and enjoys a faster
convergence speed with lower communication traffic.

8. EXPERIMENTS

To validate the success of our Delta-SimRank algorithm, we e
valuate its time and accuracy on Hadoop, an open source imple
mentation of MapReduce. We compare our algorithms with the
distributed SmRank in Algorithm 1, and also show the improve-
ment of using a distributed implementation over a single @go-
rithm. We use the following datasets for the experiments:

e Facebook social network dataset is a subgraph from the
Facebook New Orleans regional network|[24], which con-
tains 10,000 selected users and 269,037 friendship links be
tween those users. This social network is undirected and the
average number of neighbors per node is 26.9.

e Wiki-vote dataset is the history of the administrator elec-
tion when ordinary users are promoted to administratorship
in the Wikipedia community [15]. There were 7,115 users
participating in the elections, resulting in 103,689 tottks.
Thus this wiki-vote social network contains 7,115 nodesiwit

103,689 directed edges. The average number of neighbors

Table 2. Comparison of SimRank and Delta-SimRank over 5
datasetsin termsof runningtime(sec), and mean squared error
of similarity score between two algorithms.

per node for this network is 14.6.

Collaboration network datasetsinclude ca-GrQC (5424 n-

odes, 28980 edges) and ca-HepTh (9877 nodes, 51971 edges

[16], which are the networks that illustrate the collabimnags

between physics researchers submitted on arXiv. The nodes

in each graph represent authors and an edge shows that t-

wo connected researchers have collaborations. The average

numbers of neighbors per node for the two networks are 5.3
and 5.3.

DBLP co-author datasets We use a real data set from the
DBLP Computer Science Bibliography_[23] to build a co-
authorship network. In this network, a node represents an

author, and an edge between two nodes denotes that the au-

thors have collaborated papers. We restricted network-of pa
pers published in four areas (data mining, database, machin
learning, and information retrieval). To remove the isetht

nodes with less collaboration, we only select the top 1000 au

thors. There are 8548 edges in the network and the average

number of neighbors per node is 8.5.

The implementation was written in Python using the Dumbo li-
brany| We evaluated the implementation on the UIUC IFP dis-
tributed computing system, which contains eight compoitati-

Dataset Time Speedup| MSE
SimRank Delta-SimRank Ratio
Facebook| 190870 10835 17.6 9.36 e-07
Wiki-Vote 32065 1305 24.6 8.11e-12
ca-GrQc 9712 608 16.0 6.19 e-06
) ca-HepTh| 33120 984 33.7 6.48 e-06
DBLP 1264 689 1.8 1.23 e-09
Facebook Wiki-Vote
5 80 140
[©) J 3 120
§ 600 | 4 § 100 -
HE oo Smiim =~ | 5wl bots Sme 27
E 200 - R g 40 -
g O g 20
N M, P N E P - N
1 2 3 4 5 1 2 3 4 5
Iteration Iteration
ca-HepTh DBLP
5 100 — g O
% 80 |- % 25
g 60 SimRank —&— | g 2 SimRank —&—
2 ol Delta-SimRank +-x-+- | % s Delta-SimRank +--%-+-
g 20 - E 0; L
E e B e 4 L i S

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Iteration Iteration

Figure 4: The amount of intermediate data transferred in the

odes running Hadoop 0.21.0. Each computing node is equippeddistributed system for each iteration.

with two Intel Quad Core Xeon 2.4 GHz CPUs and 16 GB memo-
ry. For each job, 64 map tasks and 8 reduce tasks were assigned
the cluster. Note that the absolute times in our experimagmisot
necessarily reflect a speed limit to our algorithms, becMeggRe-
duce can scale up performance by adding more machines, Still
despite using our small testbed, our system still handlegt laet-
works with impressive performance.

8.1 Ddta-SimRank vs. SmRank on Distribut-
ed Systems

Table[2 illustrates the time and accuracy of our Delta-SinkRa
algorithm (Sectiofl5) and the distributed SimRank algoni{i$ec-
tion[3). We observe that Delta-SimRank is significantlydashan
the SimRank algorithm. In the Facebook dataset, Delta-&imkR
works 17.6 times faster than the SimRank algorithm, whiliki-
\ote dataset the Delta-SimRank algorithm is 24.6 timesfadh
ca-GrQc and ca-HepTh, the networks are sparser and eachsnode
connected to fewer neighbors. From the experiments we @an se
Delta-SimRank is fit for processing such sparse networkd tla@
ratio of speed is 16.0 and 33.7 times faster on the two dataSet
the DBLP dataset with smallest network, the overhead ofitigt
ing jobs takes effect. However, the improvement in speedills s
1.8 times.

As discussed in Section 6, the effect of rounding error ind®el
SimRank is very small. Tablgl 2 validates this conclusion.e Th
largest mean square errors ar@6 x 10~°, which is negligible for
most of the applications.

The reason for Delta-SimRank’s success lies in reducingahe
munication traffic load. Tablg]l3 compares the amount of the in
termediate data in Delta-SimRank and SimRank. Such interme
diate data is generated by map functions and received byceedu

2https://github.com/klbostee/dumbo

functions, and becomes the bottleneck for computing SirkRan
large networks. Figuirlgl 4 further illustrates the amounntgime-
diate data transferred in each iteration. For the proposeitab
SimRank algorithm the intermediate data dramatically el@ses
over iterations as only the difference of SimRank score$ vl
transferred. On the other hand, the SimRank algorithm regui
transferring all the SimRank scores even when scores hanesal
converged. The speedup ratio of Delta-SimRank is higheseon
HepTh (33.7 times faster), corresponding to the most siaifi
t reduce of intermediate data size (45.7 times smaller). réive
our Delta-SimRank method is consistently more efficienbttra-
ditional SimRank method.

To examine the scalability of Delta-SimRank, we first evidua
the proposed method on different sizes of subgraph from dce+
book dataset. The number of nodes and edges for the four sub-
graphs are (10,26), (100,494), (1000,13797) and (10000.29.

As illustrated in Figur&ls, we can see that the computatioosi-
plexity of the SimRank method is about quadratic in number of
nodes while that of the proposed Delta-SimRank is much bette

Table 3: Comparison of SimRank and Delta-SimRank over 5
datasets on intermediate data size (GB).

Dataset | SimRank Delta-SimRank data size ralio
Facebook| 2731 113 24.2
Wiki-Vote 380 12.6 31.2
ca-GrQc 142 6.4 22.2
ca-HepTh 505 11 45.9
DBLP 14.8 0.7 24.1

g 2 SimRank —=— | ' Table 4: Performance of Delta-SimRank for expanding graph.
§ 12 | A-SimRank - | Dataset Time (s) Iteration MSE | Speedup Ratid
& Facebook (1k) 254 2 6.12 e-06 2.92
5 ol] caGrQc | 210 3 763e-0§ 290
X 10 b i ca-HepTh 452 3 7.48 e-07 2.18
g Ll i DBLP 146 2 6.34e07 296
D - -

‘c% 461 L K i Facebc‘zok(lk) ‘ c‘a»GrQ‘c -

E 2F a 8 100000 {\ysing previous SimRank scoes % | 8 200000 |- Usigg previous SmRank sioes &~

8 0 Be— S L L L L g 80000 - ; 150000

0 2000 4000 6000 8000 10000 5 oo 5 oo
Number of nodes g oy 2 ol
Figure5: Comparing the scalability of SimRank and proposed Heraon teraton

ca-HepTh DBLP

Ddta-SimRank algorithm 400000 ————

300000

T T T
Fresh start —&—
Using previous SimRank scores - -+

T T T
Fresh start —&— 60000

40000

Number of non-zeros
Number of non-zeros

2500 - T T 200000 1 1
SingleCore
MultiCore tomommn 100000 7 | 20000 4
S 2000 1
@ 0 - 0 L= -
u 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
.g 1500 a Iteration Iteration
% 1000 b Figure 7: Comparison of the amount of non-zeros for expand-
£ I ing graph.
© 500 B
0 p%; Zé;p ‘qgo oo, . Table[4 shows the comparison of the results to the SimRank s-
booxr@r s R cores obtained directly from original graph. It can be sdwet t
Y with the Delta-SimRank algorithm, the expanding graphseoye
within very few iterations. Also the intermediate data (rmmmo
Figure 6: Comparison of running time of SimRank on single delta’s) is small compared to the fresh start from the ogbgraph
core machine and Delta-SimRank algorithm in distributed sys- (FigurelT).

tems.

9. RELATED WORKS

8.2 Distributed Computi ngvs Si ng| eCoreCom- Motivated by the success of Google’s distributed compusiysy
') tems and the popularity of Hadoop, many researchers have bee

puting working on designing efficient algorithms on MapReduceeyst.

To show the advantages of distributed computing, we compare chyet al. [5] showed that many popular machine learning algo-
the performance of single core SimRank and Delta-SimRank in yithms, including weighted linear regression, naive BayRGA,
Figure[6. The single core implementation follows the samekwo K-means, EM, Neural Network, logistic regression, and S\ ¢
flow as Algorithm 1, but working on a single machine instead of pe implemented in the framework of MapReduce. However, [9]
distributed systems. Note that single core computationardp shows that for some algorithms, the distributed algorithightn
handle small datasets due to the limitation of computatipoaer suffer from the overhead in distributed computing. Manyoalg
and storage. We only show comparison on DBLP, ca-GrQc and ca- rithms have been implemented in Apache Mahout librdry. ¥H.
HepTh datasets together with a subset of Facebook data®#-(F et al. [25] implemented decision trees on Hadoop. Gonzeleit.
book 1K). From the figure we can see that with the help of scal- [10] discussed how to implement parallel belief propagatising
able MapReduce paradigm, distributed Delta-SimRank isifsig the Splash approach. The MapReduce framework has gainet muc
cantly better than the single core implementation. Moreowe popularity in machine learning tasks.
can further improve the efficiency by employing more compute MapReduce also finds a lot of applications in the area of graph
s and enlarging the distributed systems. Although therevemey mining. It is easy to implement PageRank algorithm with MapR
other algorithms which improve the efficiency of SimRank in's quce framework[6]. This idea is further extended by Kahgl.

ingle machines, their performances are limited to the cdatjmn [14] who implemented graph mining library, PEGASUS, on the
power and memory size in a single machine. From the results we Hadoop platform. They first introduce a GIM-V framework for
believe distribute direction is a promising direction. matrix-vector multiplication and show how it can be applied

. graph mining algorithms such as diameter estimation, thyeRa
8.3 Expanding Graph ank estimation, random walk with restart calculation, andifig

We further evalute the proposed Delta-SimRank algorithm fo connected-components. More recently, Malewgtal. proposed
expanding graph on four datasets. We randomly remove one nod the Pregel system [20] which can reduce the system 10 in MapRe
and the edges related to that node from the graph and ob#in th duce. Compared with these problems, computing SimRankgiel
SimRank scores, which are then used to compute the initled de higher computational complexity and leads to communicettiaf-
scores for Delta-SimRank on the expanding graph (i.e., tigénal fic. It is not trivial to design an efficient SimRank algorithon
graph). MapReduce. To the best of our knowledge, our work is the first t

study this problem.

The idea of our Delta-SimRank is consistent with the presigu
tudies in computing PageRanks [13], [21], in the fundamedea
that the scores in the graph should be updated adaptivelyetto,
our new model has the following unique properties: (1) Oulté®e
SimRank is implemented using the framework of MapReduct wi
the benefit of reducing communication traffics in distrilousys-
tems. (2) Some previous works believe the ranking scordswil
ever change after it becomes stable, which is not true foRaink
computation. For the example in Talble 1, the SimRank scane ca
still increase after a few iterations of staying un-chang@&l This
paper focuses on the problem of SimRank computation, wisich i
much more expensive to compute than the traditional Pade&an
gorithms.

Quite a few studies are devoted to speed up the SimRank com-[lo]

putation, although these works are designed for a singlénime.c
Antonelliset al. [2] extended SimRank equations to take into con-
sideration an evidence factor for incident nodes and linights.
Their algorithm shows better performance than SimRank;gvew
er, the computation issue is not solved. Lizorkiral. proposed
several optimization techniques for speeding up SimRanktive
computation [[1B]. Their method improved computational eom
plexity from O(n*) to O(n?) in the worst case. Lét al. [17]
proposed to estimate SimRank scores of both static grapllyand
namic graph by solving the eigenvectors of a large linearimat
However, their approach is limited to relatively small sgahnd
not applicable for large scale network due to huge memory con

sumption. Fogaras and Racz [8] suggested speeding up SknRan

computation through probabilistic computation via the MoGar-
lo method. In another work, Yiet al. [26] employed a hierarchical
structure named SimTree for SimRank computation. By mgrgin
computations through the same branches in SimTree, thisatiet
saves a lot of computations. However, this method canneésbe
computation problem in large networks. Yu etlall[27] develbp
an efficient SimRank algorithm which reduce the time complex
ty from O(n?) to O(min(n - m,n'°927)). He and his colleagues
[11] employed graphics processing units (GPUS) to acaelehse
computation. Unlike[111] which utilizes GPU’s high memoiint-
width between graphic processing units, this paper aimedaae
the communication traffic between mapper and reducers.eTiker
little similarity between the two algorithms due to sigréfint dif-
ferences in MapReduce and GPUs.

10. CONCLUSION

In this paper we developed Delta-SimRank, a new efficierd-alg
rithm for solving SimRank on a distributed cluster using Rep
duce. Our discussion starts from the analysis of the HFON@-mo
el, and then derives Delta-SimRank algorithm which can leslus
to compute SimRank scores with less communication traffet an
faster speed. Our experiments on four real datasets veefguc-

cess of Delta-SimRank. In the best case, we get up to 30 times

speed-up compared with the distributed SimRank algorithm.

11. ADDITIONAL AUTHORS

Additional authors: ChengXiang Zhai and Thomas S. Huang, e-

mail: czhai @s.illinois. edu, huang@ f p. ui uc. edu,
University of Illinois at Urbana-Champaign.

1[%] Mgﬁglﬁ&%E.Mg:pﬁl%cene.apache.org/mahout.

[2] I. Antonellis, H. Garcia-Molina, and C.-C. Chang.
Simrank++: Query rewriting through link analysis of the
click graph.Proc. VLDB Endow., 2008.

[3] S.Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotationslrternational

conference on World Wide Web, pages 501-510. ACM New
York, NY, USA, 2007.

[4] Y. Champclaux, T. Dkaki, and J. Mothe. Enhancing high
precision using structural similarities. IADIS, volume 8,
pages 494-498, 2008.

[5] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, and A. Y.
Ng. Map-reduce for machine learning on multicaxPS
2006.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large cluste@3DI, 2004.

[7] P. Doyle and J. Snell. Random walks and electric networks
1984.

[8] D. Fogaras and B. Racz. Scaling link-based similarigreb.

In WMWY, 2005.

[9] D. Gillick, A. Faria, and J. DeNero. MapReduce: Distribd

Computing for Machine Learning, 2006.

J. Gonzalez, Y. Low, and C. Guestrin. Residual splash fo

optimally parallelizing belief propagation. AISTATS, 280

[11] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank
computation on large graphs with iterative aggregation. In
KDD, pages 543-552, 2010.

[12] G.Jeh and J. Widom. Simrank: A measure of
structural-context similarity. lin KDD, 2002.

[13] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive method
for the computation of PageRarlkinear Algebra and its
Applications, 386:51-65, 2004.

[14] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observationslCDM, 2009.

[15] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Priuatic
positive and negative links in online social networaMNV,
2010.

[16] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphutiaol:

Densification and shrinking diameteSCM Trans. KDD,

1(1), 2007.

C.Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast

computation of simrank for static and dynamic information

networks.EDBT, 2010.

D. Liben-Nowell and J. Kleinberg. The link-prediction

problem for social networkslournal of the American

Society for Information Science and Technol ogy,

58(7):1019-1031, 2007.

D. Lizorkin, P. \elikhov, M. Grinev, and D. Turdakov.

Accuracy estimate and optimization techniques for simrank

computationProc. VLDB Endow,, 1(1), 2008.

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for

large-scale graph processing.SfGMOD, pages 135-146.

ACM, 2010.

F. McSherry. A uniform approach to accelerated paderan

computation. INWMWV, pages 575-582, 2005.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web. 1998.

[23] prepared by the Knowledge Discovery Laboratory in
University of Massachusetts. Dblp computer science
bibliography.
http://kdl.cs.umass.edu/data/dblp/dblp-info.html.

[24] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook WDSN,

20009.

[25] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochasticignad
boosted distributed decision trees.GHKM '09, 2009.

[26] X.Yin, J. Han, and P. S. Yu. Linkclus: efficient clustagivia
heterogeneous semantic links. MhDB ’ 06, 2006.

[27] W. Yu, X. Lin, and J. Le. A space and time efficient
algorithm for simrank computation. IAPWeb, pages
164-170, 2010.

[28] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supentise
learning using gaussian fields and harmonic functions. In
ICML, 2003.

[17]

[18]

[19]

[20]

[21]

	Introduction
	Problem Statement
	A Naive Implementation of SimRank on MapReduce
	 Harmonic Field on Node-Pair Graph
	Delta-SimRank
	Delta-SimRank on MapReduce
	Expanding Graphs
	Experiments
	Delta-SimRank vs. SimRank on Distributed Systems
	Distributed Computing vs. Single Core Computing
	Expanding Graph

	Related Works
	Conclusion
	Additional Authors
	References

