
Delta-SimRank Computing on MapReduce

Liangliang Cao
IBM Watson Research Center
liangliang.cao@us.ibm.com

Hyun Duk Kim,
University of Illinois at
Urbana-Champaign

hkim277@illinois.edu

Min-Hsuan Tsai
University of Illinois at
Urbana-Champaign

mtsai2@illinois.edu

Brian Cho
University of Illinois at
Urbana-Champaign

bcho2@illinois.edu

Zhen Li
University of Illinois at
Urbana-Champaign

zhenli3@illinois.edu

Indranil Gupta
University of Illinois at
Urbana-Champaign
indy@illinois.edu

ABSTRACT
Based on the intuition that “two objects are similar if they are re-
lated to similar objects”, SimRank (proposed by Jeh and Widom
in 2002) has become a famous measure to compare the similarity
between two nodes using network structure. Although SimRank is
applicable to a wide range of areas such as social networks, citation
networks, link prediction, etc., it suffers from heavy computational
complexity and space requirements. Most existing efforts to ac-
celerate SimRank computation work only for static graphs and on
single machines. This paper considers the problem of computing
SimRank efficiently in a distributed system while handling dynam-
ic networks which grow with time. We first consider an abstract
model called Harmonic Field on Node-pair Graph. We use this
model to derive SimRank and the proposed Delta-SimRank, which
is demonstrated to fit the nature of distributed computing and can
be efficiently implemented using Google’s MapReduce paradigm.
Delta-SimRank can effectively reduce the computational cost and
can also benefit the applications with non-static network structures.
Our experimental results on four real world networks show that
Delta-SimRank is much more efficient than the distributed Sim-
Rank algorithm, and leads to up to 30 times speed-up in the best
case1.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithm

Keywords
SimRank, Delta-SimRank, Distributed Computing

1Source codes are provided at
pikachu.ifp.uiuc.edu/~mtsai2/delta_simrank/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigMine’12, August 12, 2012 Beijing, China
Copyright 2012 ACM 978-1-4503-1547-0/12/08 ...$10.00.

1. INTRODUCTION
As social community websites (including Facebook, Twitter, Quo-

ra, Groupon, etc.) have become increasingly popular, it hasbeen
more and more important to measure similarities between twoob-
jects with network structures. The problem of measuring “similar-
ity” of objects arises in many applications: to predict which user
might be a potential friend, to recommend music or videos to cus-
tomers, and to promote sales of products to specific user groups.
To accomplish these goals, it is no longer enough to just match the
subject with the limited user profiles; it is more preferableto ex-
plore the rich resource of the network structure. Intuitively, a video
might be interesting to a user if he likes another movie that is sim-
ilar. Two people might want to know each other if their friends are
similar.

To explore the network structure to measure object similarity,
Jeh and Widom [12] proposed SimRank to measure the similarity
between two nodes in the network. SimRank is based on the idea
that “two objects are similar if they are related to similar objects.”
Compared with other domain-specific measures, SimRank usually
yields the best performance in network context. SimRank hasbeen
successfully used for many applications in social networks, includ-
ing citation networks [17], and student-course networks [8]. It is
also applied to social annotation [3], information retrieval [4], and
link prediction [18].

Despite its effectiveness, SimRank is very expensive to compute
in two aspects. First, the time complexity of computing SimRank is
huge. It might take about 46 hours to compute the SimRank mea-
sures in a synthetic network with 10K nodes on a single machine
[19]. Second, when the network is large, it will require a huge
amount of memory to compute SimRank, which is often beyond
the ability of a single computer. For example, for a graph with 1M
nodes, several TB memory is needed to cache all the SimRank s-
cores. Although there have been quite a few works to improve the
SimRank algorithm, these works were all intended for singlecom-
puters [2, 19, 17, 8, 26]. and thus are confined to single machine’s
computational power and memory limits.

In the era of Internet, searching engines and social community
service are built on distributed architectures. Google’s MapReduce
[6] is a popular paradigm in these settings for large-scale compu-
tations. In this study, we aim to design an efficient algorithm to
compute SimRank on MapReduce. We first present a distribut-
ed implementation of SimRank on MapReduce. We show that the
use of a distributed system makes it possible to compute SimRank
in large networks. Our first algorithm greatly reduces the high
computational cost and memory requirement, at the cost of lots
of data transfer in the distributed system. To further improve the

pikachu.ifp.uiuc.edu/~mtsai2/delta_simrank/

performance, we design a new algorithm for distributed comput-
ing. To understand our new model, we will introduce an abstract
model, named Harmonic Field On the Node-pair Graph (HFONG),
which provides a general model to analyze the evolvement of node-
pair similarities. We introduce a special case of HFONG, named
Delta-SimRank, and prove that the problem of computing SimRank
in a network can be transformed to Delta-SimRank. Compared
with original SimRank, Delta-SimRank fits better in the scenari-
o of distribute computing as it leads to less communication traffic
and faster speed. In addition, Delta-SimRank can be used fornot
only static graphs but also dynamic graphs whose nodes and edges
keep increasing. Our experimental evaluation on four real datasets
validates the success of Delta-SimRank on distributed systems.

Following are the contributions of this study: (1) We first im-
plement SimRank on MapReduce and find that the bottleneck lies
in huge network loads. (2) We introduce harmonic field analysis
on node-pair graphs, which gives rise to the new Delta-SimRank
algorithm. (3) We prove that Delta-SimRank enjoys quite a few
nice properties, which lead to an efficient algorithm on MapRe-
duce to compute SimRank scores not only on static graphs but also
on graphs with increasing number of nodes and edges.

2. PROBLEM STATEMENT
SimRank [12] is a link-based similarity measure. Unlike other

similarity measures such as Euclidian distance which are computed
using object attributes, SimRank suggests a complementarysimi-
larity metric which is applicable in any domain with relationships
between objects.

We consider a graphG(V,E) that consists of a set of nodesV
and a set of linksE. A link from nodea1 to a2 is denoted as
(a1, a2) ∈ E. For a nodea, we useI(a) = {b ∈ V |(b, a) ∈ E}
to denote all the nodes that have a link toa, and call these the in-
neighbors ofa.

In SimRank, the similarity between two nodes (or objects)a and
b is defined as the average similarity between nodes linked with a
and those withb. Mathematically, assignings(a, b) as the similari-
ty value between nodea andb, we are looking for a stable solution
on the graph which satisfies

s(a, b) =

{

1 if a = b
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b) s(c, d) if a 6= b,
(1)

whereC is a decay factor satisfying0 < C < 1.
In practice, SimRank is computed in an iterative manner. Denot-

ing st(a, b) as SimRank scores at iterationt, Jeh and Widom [12]
initialize the SimRank scores as

s0(a, b) =

{

1 if a = b
0 if a 6= b,

(2)

and then updated using (1). The update process will takeT itera-
tions, and the finalsT will converge to the similarity value in (1).

Note that computing SimRank directly using (1) is very expen-
sive. At first glance, SimRank computation looks like the famous
PageRank algorithm [22] since they are both iterative algorithms
running on graphs. However, computing PageRank is a much easi-
er task since we can finish one iteration of PageRank by visiting all
the edges in the graph once. Given a graph withN nodes andD
edges, the time complexity of computing PageRank isO(D) and a
space complexity isO(N). In contrast, computing SimRank by it-
eratively evaluating (1) leads to a time complexity ofO(N4) in the
worst case and the space complexity ofO(N2). As a result, how to
compute SimRank in large scale graphs remains an unsolved prob-
lem.

Algorithm 1 : A naive implementation of SimRank Algorithm on
MapReduce

Input: GraphG, initializeds0

1: for t = 0: T-1
2: Map Function((a, b), st(a, b))
3: finda, b’s neighborI(a) andI(b) respectively
4: for eachc ∈ I(a), d ∈ I(b)
5: output(c, d), st(a, b)
6: Reduce Function (Key = (c,d), Values = vs[])
7: if c = d
8: st+1(c, d) = 1
9: else

10: st+1(c, d) = C
len(vs)

sum(vs)

11: output(c, d),st+1(c, d)
Output: updatedsT

3. A NAIVE IMPLEMENTATION OF SIM-
RANK ON MAPREDUCE

Our goal is to speed up SimRank computation on large networks
that cannot be efficiently processed in a single machine, by divid-
ing both the computation time and memory requirements across the
multiple machines. To achieve our goal, we develop algorithms un-
der the MapReduce framework. MapReduce is attractive because it
runs computations in parallel on a large cluster of machines, while
handling details such as data distribution, fault-tolerance, load bal-
ancing, etc.

In order to use the framework, programs are written as map and
reduce functions. Map functions are run in parallel on each part of
the input data. The resulting output is key-value pairs. Each pair is
sent, in most cases over the network, to a reduce process according
to its key. Each reduce process then groups values of the samekey
and runs the reduce function over these values to produce thefinal
output.

Algorithm 1 shows our first algorithm of computing SimRank on
MapReduce. The key of the map function is a pair of nodes denoted
as(c, d), which is called a node-pair for brevity. In map function,
each SimRank scores(a, b) is distributed to all the neighboring
node-pairs corresponding to the key of node-pair(c, d). In the re-
duce function, the new SimRank scores(c, d) is updated by sum-
ming up all the values passed to node-pair(c, d).The MapReduce-
based SimRank algorithm has two advantages. On one hand, the
computation is distributed to multiple machines. Moreover, the re-
quired size of memory is greatly reduced.

However, we should realize that such a naive implementation
has its limitations. Each mapper needs to sendst(a, b) multiple
times to the reducer. For a graph withN nodes, supposep is the
average number of neighbors to which a node is connected; we can
estimate the amount of data transferred from mappers to reducers
asO(p2N2). Mapper and reducer processes are very likely to exist
on different machines, so the huge amount of data transfer between
mappers and reducers will slow down the entire distributed system
and even result in many IO errors.

To alleviate the burden of computing SimRank, this paper de-
velops Delta-SimRank, a new algorithm with less data transfer and
faster speed in distributed systems. Next we will start by discussing
an abstract model named Harmonic Field on the the Node-pair
Graph(HFONG), from which we will gain good insights into Delta-
SimRank and make our algorithm easy to understand.

4. HARMONIC FIELD ON NODE-PAIR GRAPH

We first review the node-pair graph representation [12], which
provides an alternative view for graph similarity. GivenN subjects
in the original graphG = {V, E}, we construct a node-pair graph
G2 = {V 2, E2}with N2 nodes. In the node-pair graph, each node
denotes one pair of subjects of the original graph. For example,
one nodeab in G2 corresponds to a pair of nodesa andb in G. To
embed the neighborhood information, we construct the node-pair
graph in the following way: InG2, there is an edge(ab, cd) ∈ E2

if (a, c) ∈ E and(b, d) ∈ E.
Suppose each node inab ∈ G2 corresponds to a non-negative

valuef(ab). We call such valuesnode-pair scores. By using the
notation of the node-pair graph, we can rewrite the SimRank up-
dating step as

f t+1(ab) =

{

1 if a = b
C

|I(a)||I(b)|

∑

ij∈I(ab) f
t(ij) if a 6= b.

(3)

Starting from (3), we study a more general model. Suppose the
nodes in aG2 are separated into two disjoint setsU andL satisfy-
ing V 2 = U

⋃

L. Lettingx or y denote a node inG2, the general
model can be written as

f t+1(x) =

{

f0(x) if x ∈ L
∑

y∈I(x) wxyf
t(y) if x ∈ U,

(4)

whereI(x) denotes the neighboring nodes ofx,wxy is a weight be-
tweenx andy, andf0(x) satisfies0 ≤ f0(x) ≤ 1. HereL stands
for the set where node-pair scores are fixed, andU is complemen-
tary toL. In U , a node-pair score is updated as the the weighted
average off in its neighborhood. Such a functionf is called a
harmonic function [7]. We name the model in (4) as theHarmonic
Field On Node-pair Graphs (HFONG). HFONG is related to Zhu
et al’s semi-supervised learning model [28]: if we viewG2 as a
graph in whichL is labeled withf0, andU is not labeled, then the
process of updatingf is similar to the process of finding the opti-
mal labels ofU . However, Zhu’s work aims to estimate the discrete
labels, while our goal is to estimate the harmonic function between
0 and 1.

An important property of the HFONG in (4) is that, due to the
maximum principle of harmonic functions [28][7], it will converge
to a unique solution. It is easy to find the analytical solution of the
converged value. Suppose we organize the scores onV 2 into a long
vectorf , and the corresponding vectors onU andL arefu andfl,

respectively, withf =

[

fl

fu

]

. Note thatfl = f0
l is a vector which

remains unchanged during the iterations. LettingW be the weight
matrix with each elementwxy , we can splitW into four blocks

over the set ofU andL by W =

[

Wll Wlu

Wul Wuu

]

. Then (4) can

be written in a vector form

fl ← f
0
l (5)

fu ←Wuufu +Wulfl (6)

When the HFONG converges, we havefu = Wuufu + Wulfl,
which leads to

fu = (I −Wuu)
−1Wulfl. (7)

Note that the convergence values will be the same even subject to
different initialization.

We cannot use (7) directly to compute SimRank because solving
linear equations directly in (7) is too expensive for large networks.
However, we make use of Eq. (7) to analyze the following two
examples of HFONG.

Example 1: If we let f0l = 1 = [1, 1,]T in HFONG, we can
analyze the SimRank function as

f t+1(x) =

{

1 if x ∈ L
∑

y∈I(x) wxyf
t(y) if x ∈ U.

(8)

From the discussion of HFONG we get the converged score

fu = (I −Wuu)
−1Wul1. (9)

Example 2: For another example, we assumef
0
l = 0 = [0, 0,]T .

The SimRank scores are thus updated according to

f t+1(x) =

{

0 if x ∈ L
∑

y∈I(x) wxyf
t(y) if x ∈ U.

(10)

From the discussion of HFONG we get the converged score

fu = (I −Wuu)
−1Wul0 = 0. (11)

It is easy to see the difference between Example 1 and 2: the
node-pair scores in Example 1 generally converge to a non-zero
vector, while the scores in Example 2 will converge to zero. Next
we will show Example 2 corresponds to an important model named
Delta-SimRank and its properties are preferred in distributed com-
puting.

5. DELTA-SIMRANK
Now we consider the representation in the original graph cor-

responding to Example 2 in the last section. Supposex ∈ V 2

corresponds to nodea, b in the original graph, andy corresponds to
nodec, d. LetL = {aa|a ∈ V }, U = {ab|a, b ∈ V, a 6= b}, and

wxy = wab,cd =
C

|I(a)||I(b)|
,

then we can write Example 2 in a new form

∆t+1(a, b) =

{

0 if a = b
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b) ∆
t(c, d) if a 6= b.

(12)

We call the model as Delta-SimRank and∆t(a, b) as the Delta s-
core at iterationt. Both Delta-SimRank and SimRank are examples
of HFONG. However, Delta-SimRank has some unique properties
which make it attractive for distributed computing. We willdiscuss
these properties in the following.

PROPERTY 1. The computation of SimRank can be solved by
the use of Delta-SimRank.

PROOF. If we initialize

∆1(a, b) = s1(a, b)− s0(a, b), (13)

then it is easy to see that (we first considera 6= b):

∆t+1(a, b) =
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b)

st(c, d)− st−1(c, d)

(14)

=
C

|I(a)||I(b)|

∑

c,d

st(c, d)−
C

|I(a)||I(b)|

∑

c,d

st−1(c, d)

= st+1(a, b)− st(a, b)

Note that this condition holds even fora = b.

∆t+1(a, a) = st+1(a, a)− st(a, a) = 1− 1 = 0 (15)

Then we can transform the problem of computing SimRank to the
problem of updating Delta scores:

∆t+1(a, b) =
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b)

∆t(c, d), if a 6= b

st+1(a, b) = st(a, b) +∆t+1(a, b)

Note that (12) in fact models the change of SimRank, which is
the reason for the name Delta-SimRank.

PROPERTY 2. If the initialized ∆1(a, b) ≥ 0 for all possible
node-pairs, then these Delta scores keep non-negative for all itera-
tions.

PROOF. We first consider Delta score in the second iteration.

∆2(a, b) =
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b)

∆1(c, d)

≥
C

|I(a)||I(b)|

∑

c∈I(a),d∈I(b)

0

= 0.

Similarly, we can prove∆t(a, b) ≥ 0 holds fort = 3, 4, · · · .

PROPERTY 3. After some iterations of updating, Delta-SimRank
scores converge to zero.

PROOF. Considering Eq.(11) in the last section, we can see that
Delta-SimRank scores will converge to0.

Table 1: The evolvement of similarity score between Univ and
Prof B

iterations: 3 4 · · · 8 9 10
SimRank: 0.128 0.128 · · · 0.128 0.132 0.132

Delta-SimRank: 0.128 0 · · · 0 0.004 0

To get an intuitive understanding of Delta-SimRank, we use a
toy example shown in Figure 1, and observe the similarity between
nodes. This example was also used in Jeh and Widom’s paper [12],
and we employ this example to study the differences between Sim-
Rank and Delta-SimRank.

Figure 1: A toy network used in origin SimRank paper.

Table 1 illustrates the evolvement of the SimRank score and
Delta score between University and Professor B in the toy network.
For this example we set decay factorC = 0.8 as in [12]. Note that
using a small decay factor will lead to faster convergence. From
Table 1 we can see that in a lot of iterations the Delta score iszero
while most of the SimRank score is a non-zero value. SimRank
value keeps increasing in some iterations while staying unchanged
in some other iterations.

0 2 4 6 8 10
0

5

10

15

20

iteration

num of simRank scores to update
num of non−zero Delta scores

x

Figure 2: Updating ∆ on the toy network in Figure 1.

Algorithm 2 : Computing Delta-SimRank on MapReduce

Input: GraphG, initialized∆t

1: Map function((a,b),∆t(a, b))
2: if a = b or∆t(a, b) ≤ ǫ
3: return
4: finda, b’s neighborI(a) andI(b) respectively
5: for eachc ∈ I(a), d ∈ I(b)
6: output(c, d), C

|I(c)||I(d)|
∆t(a, b)

7: Reduce function (Key = (c,d), Values = vs[])
8: if c = d
9: output∆t+1(c, d) = 0

10: else
11: output∆t+1 = sum(vs)
Output: updated∆t+1

Figure 2 shows the evolvement of non-zero Delta-scores in the
toy example. We can see that for this toy example, the similarity
scores between different nodes converge at different speeds. A s-
mall number of Delta-SimRank values are zeros. If we compute
SimRank scores directly, we need to re-compute the pair-wise sim-
ilarity for all nodes. In Algorithm 1, the SimRank scores aregener-
ally non-zero and all the scores should be sent from mappers to re-
ducers. However, in Delta-SimRank, we send only non-zero Delta
scores to reducers. In other words, we need only transfer thenon-
zero data across the MapReduce system and communication traffic
is lower. Based on the above discussion, we can see thatcom-
pared with SimRank, Delta-SimRank is more efficient to compute
on MapReduce. In the next section we will discuss how to design
the distributed algorithm for Delta-SimRank.

6. DELTA-SIMRANK ON MAPREDUCE
In this section, we first discuss how to implement Delta-SimRank

in eq.(12) efficiently on MapReduce, and then propose a faster so-
lution of SimRank.

Algorithm 3 : An efficient approach to compute SimRank

Input: : GraphG, init SimRanks0

1: Update SimRank using Algorithm 1 and obtains1.
2: Init Delta-SimRank by∆1 = s1 − s0

3: for t = 1: T-1
4: update∆t+1-SimRank as in Algorithm 2.
5: st+1 = st +∆t+1

Output: updated SimRank scoresT

Algorithm 2 describes our implementation of Delta-SimRankon
MapReduce (single iteration). Delta-SimRank shares a lot of simi-
larities with SimRank in Algorithm 1, since both of them are exam-
ples of HFONG. However, there are two significant differences be-

tween Algorithm 2 and Algorithm 1. First, Delta-SimRank checks
whether∆t(a, b) ≤ ǫ before sending the data to reducers. This will
significantly reduce the amount of the data transmission. Inaddi-
tion, Delta-SimRank pre-computes the coefficient C

|I(c)||I(d)|
in the

map function. Since only non-zero∆ are sent to the reducer, the
size of neighborhood|I(c)||I(d)| is no longer equal to the length
of vs and need to be pre-computed. In the implementation, we can
store|I(c)| into a separate file and need not compute them in the
map function.

The communication traffic of Delta-SimRank is lower than that
of SimRank. Suppose there are onlyM non-zero Delta scores,
then the data transferred from mappers to reducers isO(p2M). In
contrast, we have discussed in Section 3 that the load of SimRank
is O(p2N2). When the communication traffic is low, distributed
system will suffer less from transmission errors which further im-
proves the system efficiency.

Based on Algorithm 2, we can design a new efficient algorithm
for SimRank. Intuitively, the new method does not recomputethe
SimRank scores of the nodes that have already converged, butfocus
on the nodes whose∆t are non-zero. Our algorithm is summarized
in Algorithm3.

Next we discuss some implementation issues for Delta-SimRank.
Rounding Errors: Although we have proved that SimRank can

be exactly transformed into a Delta-SimRank problem (ref. Prop-
erty 3), in practice there might exist rounding errors sincein Algo-
rithm 3, we use∆ ≤ ǫ as the condition to check whether∆ is zero.
To analyze the effects of rounding errors, we consider the following
property:

PROPERTY 4. If maxa,b ∆
t(a, b) ≤ ǫ, we can estimate the up-

perbound of ∆t(a, b) after t0 iteration by maxa,b ∆
t+t0(a, b) ≤

Ct0ǫ.

We omit the details of the proof due to space limited. Based on
this property, we can see that the rounding error will decrease with
more iterations withC ≤ 1. In practice, we useǫ = 10−4 in our
experiment, and the rounding error will be negligible in most of the
applications.

Number of Iterations: How to select the number of iterations is
an important problem. Jeh and Widom [12] empirically suggested
chooseT = 5 with a decay factorC = 0.8. However, Lizorkin et
al. [19] showed thatT = 5 is not enough to obtained a converged
solution. They suggested to use a largerT or a smaller decay fac-
tor. From all our experiments, we observed that whenC = 0.4,
Delta-SimRank scores become all zeros within 8 iterations,which
means SimRank converges. On some datasets it converges even
faster (within 5 iterations).

Input Distribution: In our algorithm, each mapper need not ac-
cess the whole adjacent matrix. On the contrary, the necessary in-
formation is limited to the neighbors of a given node-pair. As a
result, the input distribution is easy for sparse graph. Onemight
argue that the size of neighborhood|I(c)| or |I(d)| requires going
over all the nodes in the graph, however, such neighborhood size
could be computed before hand and then saved withO(N) space.
As a result, our model is fit for the distributed computing.

7. EXPANDING GRAPHS
In real life and Internet communities, networks are rarely static.

People might get to know new friends, or have new collaborators;
social media communities such as Facebook or Twitter accommo-
date new users every day. To model those networks, we define
an expanding graph as the graph in which the number of nodes
or edges keeps increasing. To compute the SimRank scores in an
expanding graph, a straightforward way is to update the adjacent

0 2 4 6 8 10
−5

0

5

10

15

20

iteration

ch
an

ge
s

of
 S

im
R

an
k

sc
or

es

computation with old SimRank score
computation with expaned graph only

Figure 3: Delta-SimRank on expanded graph can converge to
the solution faster

matrix and compute the scores from a fresh start. However, this
naive way neglects the scores computed in previous stages, and is
not efficient enough for real life applications. In this section, we
will use Delta-SimRank to develop an efficient way of computing
SimRank scores in expanding graphs.

Suppose the old graph isG = {V old, Eold}, and the new graph
is G = {V, E}. To guarantee that the graph is expanding, the
constraint satisfiesEold ⊆ E, V old ⊆ V . In general cases, the
number of newly added nodes or edges is relatively small compared
with the size ofGold. To compute the SimRank scores onG, a
naive way is to re-compute SimRank again. However, with Delta-
SimRank we can employ the information from the old graph to
speed up the computation. Supposesold is the SimRank score on
Gold, we can get the corresponding initialization onG by

sinit(a, b) =

sold(a, b) if a, b ∈ V old, (a, b) ∈ Eold

1 if a = b, a ∈ V, a /∈ V old

0 otherwise.

Then we can usesinit as the initialization on graphG. Based on
the discussion of HFONG, it is not difficult to see this initialization
will also converge to the ground-truth SimRank scores. However,
sinit is close to the SimRank scores so that we might get a better
estimation for Delta-SimRank.

After one iteration of SimRank fromsinit, we obtains∗. Then
we can initialize Delta score by∆1(a, b) = s∗−sinit, and proceed
Delta-SimRank algorithm. Note that the initialized value is a good
initialization so that∆ will converge to zeros faster. To show the
effectiveness of our algorithm, we employ a toy example witha
subgraph with 99 nodes from Facebook network, expand the graph
by adding a new node. Figure 3 compares the speed of convergence
using traditional method and using our new algorithm. Obviously
our new algorithm is fit for expanded graph and enjoys a faster
convergence speed with lower communication traffic.

8. EXPERIMENTS
To validate the success of our Delta-SimRank algorithm, we e-

valuate its time and accuracy on Hadoop, an open source imple-
mentation of MapReduce. We compare our algorithms with the
distributed SimRank in Algorithm 1, and also show the improve-
ment of using a distributed implementation over a single core algo-
rithm. We use the following datasets for the experiments:

• Facebook social network dataset is a subgraph from the
Facebook New Orleans regional network [24], which con-
tains 10,000 selected users and 269,037 friendship links be-
tween those users. This social network is undirected and the
average number of neighbors per node is 26.9.

• Wiki-vote dataset is the history of the administrator elec-
tion when ordinary users are promoted to administratorship
in the Wikipedia community [15]. There were 7,115 users
participating in the elections, resulting in 103,689 totalvotes.
Thus this wiki-vote social network contains 7,115 nodes with
103,689 directed edges. The average number of neighbors
per node for this network is 14.6.

• Collaboration network datasets include ca-GrQC (5424 n-
odes, 28980 edges) and ca-HepTh (9877 nodes, 51971 edges)
[16], which are the networks that illustrate the collaborations
between physics researchers submitted on arXiv. The nodes
in each graph represent authors and an edge shows that t-
wo connected researchers have collaborations. The average
numbers of neighbors per node for the two networks are 5.3
and 5.3.

• DBLP co-author datasets We use a real data set from the
DBLP Computer Science Bibliography [23] to build a co-
authorship network. In this network, a node represents an
author, and an edge between two nodes denotes that the au-
thors have collaborated papers. We restricted network of pa-
pers published in four areas (data mining, database, machine
learning, and information retrieval). To remove the isolated
nodes with less collaboration, we only select the top 1000 au-
thors. There are 8548 edges in the network and the average
number of neighbors per node is 8.5.

The implementation was written in Python using the Dumbo li-
brary.2 We evaluated the implementation on the UIUC IFP dis-
tributed computing system, which contains eight computation n-
odes running Hadoop 0.21.0. Each computing node is equipped
with two Intel Quad Core Xeon 2.4 GHz CPUs and 16 GB memo-
ry. For each job, 64 map tasks and 8 reduce tasks were assignedin
the cluster. Note that the absolute times in our experimentsdo not
necessarily reflect a speed limit to our algorithms, becauseMapRe-
duce can scale up performance by adding more machines. Still,
despite using our small testbed, our system still handled large net-
works with impressive performance.

8.1 Delta-SimRank vs. SimRank on Distribut-
ed Systems

Table 2 illustrates the time and accuracy of our Delta-SimRank
algorithm (Section 5) and the distributed SimRank algorithm (Sec-
tion 3). We observe that Delta-SimRank is significantly faster than
the SimRank algorithm. In the Facebook dataset, Delta-SimRank
works 17.6 times faster than the SimRank algorithm, while inWiki-
Vote dataset the Delta-SimRank algorithm is 24.6 times faster. In
ca-GrQc and ca-HepTh, the networks are sparser and each nodeis
connected to fewer neighbors. From the experiments we can see
Delta-SimRank is fit for processing such sparse networks, and the
ratio of speed is 16.0 and 33.7 times faster on the two datasets. On
the DBLP dataset with smallest network, the overhead of distribut-
ing jobs takes effect. However, the improvement in speed is still
1.8 times.

As discussed in Section 6, the effect of rounding error in Delta-
SimRank is very small. Table 2 validates this conclusion. The
largest mean square errors are8.06× 10−6 , which is negligible for
most of the applications.

The reason for Delta-SimRank’s success lies in reducing thecom-
munication traffic load. Table 3 compares the amount of the in-
termediate data in Delta-SimRank and SimRank. Such interme-
diate data is generated by map functions and received by reduce
2https://github.com/klbostee/dumbo

Table 2: Comparison of SimRank and Delta-SimRank over 5
datasets in terms of running time (sec), and mean squared error
of similarity score between two algorithms.

Dataset Time Speedup MSE
SimRank Delta-SimRank Ratio

Facebook 190870 10835 17.6 9.36 e-07
Wiki-Vote 32065 1305 24.6 8.11 e-12
ca-GrQc 9712 608 16.0 6.19 e-06

ca-HepTh 33120 984 33.7 6.48 e-06
DBLP 1264 689 1.8 1.23 e-09

Figure 4: The amount of intermediate data transferred in the
distributed system for each iteration.

functions, and becomes the bottleneck for computing SimRank on
large networks. Figure 4 further illustrates the amount of interme-
diate data transferred in each iteration. For the proposed Delta-
SimRank algorithm the intermediate data dramatically decreases
over iterations as only the difference of SimRank scores will be
transferred. On the other hand, the SimRank algorithm requires
transferring all the SimRank scores even when scores have almost
converged. The speedup ratio of Delta-SimRank is highest onca-
HepTh (33.7 times faster), corresponding to the most significan-
t reduce of intermediate data size (45.7 times smaller). Overall
our Delta-SimRank method is consistently more efficient than tra-
ditional SimRank method.

To examine the scalability of Delta-SimRank, we first evaluate
the proposed method on different sizes of subgraph from the Face-
book dataset. The number of nodes and edges for the four sub-
graphs are (10,26), (100,494), (1000,13797) and (10000,269037).
As illustrated in Figure 5, we can see that the computationalcom-
plexity of the SimRank method is about quadratic in number of
nodes while that of the proposed Delta-SimRank is much better.

Table 3: Comparison of SimRank and Delta-SimRank over 5
datasets on intermediate data size (GB).

Dataset SimRank Delta-SimRank data size ratio
Facebook 2731 113 24.2
Wiki-Vote 380 12.6 31.2
ca-GrQc 142 6.4 22.2

ca-HepTh 505 11 45.9
DBLP 14.8 0.7 24.1

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 2000 4000 6000 8000 10000

C
om

pu
tin

g
tim

e
(×

10
4 S

ec
on

ds
)

Number of nodes

SimRank
∆-SimRank

Figure 5: Comparing the scalability of SimRank and proposed
Delta-SimRank algorithm

 0

 500

 1000

 1500

 2000

 2500

Facebook(1k)

DBLP
ca-GrQc

ca-HepTh

co
m

pu
tin

g
tim

e
(s

ec
)

SingleCore
MultiCore

Figure 6: Comparison of running time of SimRank on single
core machine and Delta-SimRank algorithm in distributed sys-
tems.

8.2 Distributed Computing vs. Single Core Com-
puting

To show the advantages of distributed computing, we compare
the performance of single core SimRank and Delta-SimRank in
Figure 6. The single core implementation follows the same work-
flow as Algorithm 1, but working on a single machine instead of
distributed systems. Note that single core computation canonly
handle small datasets due to the limitation of computational power
and storage. We only show comparison on DBLP, ca-GrQc and ca-
HepTh datasets together with a subset of Facebook dataset (Face-
book 1K). From the figure we can see that with the help of scal-
able MapReduce paradigm, distributed Delta-SimRank is signifi-
cantly better than the single core implementation. Moreover, we
can further improve the efficiency by employing more computer-
s and enlarging the distributed systems. Although there aremany
other algorithms which improve the efficiency of SimRank in s-
ingle machines, their performances are limited to the computation
power and memory size in a single machine. From the results we
believe distribute direction is a promising direction.

8.3 Expanding Graph
We further evalute the proposed Delta-SimRank algorithm for

expanding graph on four datasets. We randomly remove one node
and the edges related to that node from the graph and obtain the
SimRank scores, which are then used to compute the initial delta
scores for Delta-SimRank on the expanding graph (i.e., the original
graph).

Table 4: Performance of Delta-SimRank for expanding graph.
Dataset Time (s) Iteration MSE Speedup Ratio

Facebook (1k) 254 2 6.12 e-06 2.92
ca-GrQc 210 3 7.63 e-06 2.90

ca-HepTh 452 3 7.48 e-07 2.18
DBLP 146 2 6.34 e-07 2.96

 0

 20000

 40000

 60000

 80000

 100000

 1 2 3 4 5

N
um

be
r

of
 n

on
-z

er
os

Iteration

Facebook(1k)

Fresh start
Using previous SimRank scores

 0

 50000

 100000

 150000

 200000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 n

on
-z

er
os

Iteration

ca-GrQc

Fresh start
Using previous SimRank scores

 0

 100000

 200000

 300000

 400000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 n

on
-z

er
os

Iteration

ca-HepTh

Fresh start
Using previous SimRank scores

 0

 20000

 40000

 60000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 n

on
-z

er
os

Iteration

DBLP

Fresh start
Using previous SimRank scores

Figure 7: Comparison of the amount of non-zeros for expand-
ing graph.

Table 4 shows the comparison of the results to the SimRank s-
cores obtained directly from original graph. It can be seen that
with the Delta-SimRank algorithm, the expanding graphs converge
within very few iterations. Also the intermediate data (non-zero
delta’s) is small compared to the fresh start from the original graph
(Figure 7).

9. RELATED WORKS
Motivated by the success of Google’s distributed computingsys-

tems and the popularity of Hadoop, many researchers have been
working on designing efficient algorithms on MapReduce systems.
Chu et al. [5] showed that many popular machine learning algo-
rithms, including weighted linear regression, naive Bayes, PCA,
K-means, EM, Neural Network, logistic regression, and SVM can
be implemented in the framework of MapReduce. However, [9]
shows that for some algorithms, the distributed algorithm might
suffer from the overhead in distributed computing. Many algo-
rithms have been implemented in Apache Mahout library. [1].Ye
et al. [25] implemented decision trees on Hadoop. Gonzalezet al.
[10] discussed how to implement parallel belief propagation using
the Splash approach. The MapReduce framework has gained much
popularity in machine learning tasks.

MapReduce also finds a lot of applications in the area of graph
mining. It is easy to implement PageRank algorithm with MapRe-
duce framework [6]. This idea is further extended by Kanget al.
[14] who implemented graph mining library, PEGASUS, on the
Hadoop platform. They first introduce a GIM-V framework for
matrix-vector multiplication and show how it can be appliedto
graph mining algorithms such as diameter estimation, the PageR-
ank estimation, random walk with restart calculation, and finding
connected-components. More recently, Malewiczet al. proposed
the Pregel system [20] which can reduce the system IO in MapRe-
duce. Compared with these problems, computing SimRank yields
higher computational complexity and leads to communication traf-
fic. It is not trivial to design an efficient SimRank algorithmon
MapReduce. To the best of our knowledge, our work is the first to

study this problem.
The idea of our Delta-SimRank is consistent with the previous s-

tudies in computing PageRanks [13], [21], in the fundamental idea
that the scores in the graph should be updated adaptively. However,
our new model has the following unique properties: (1) Our Delta-
SimRank is implemented using the framework of MapReduce, with
the benefit of reducing communication traffics in distributed sys-
tems. (2) Some previous works believe the ranking scores will n-
ever change after it becomes stable, which is not true for SimRank
computation. For the example in Table 1, the SimRank score can
still increase after a few iterations of staying un-changed. (3) This
paper focuses on the problem of SimRank computation, which is
much more expensive to compute than the traditional PageRank al-
gorithms.

Quite a few studies are devoted to speed up the SimRank com-
putation, although these works are designed for a single machine.
Antonelliset al. [2] extended SimRank equations to take into con-
sideration an evidence factor for incident nodes and link weights.
Their algorithm shows better performance than SimRank; howev-
er, the computation issue is not solved. Lizorkinet al. proposed
several optimization techniques for speeding up SimRank iterative
computation [19]. Their method improved computational com-
plexity from O(n4) to O(n3) in the worst case. Liet al. [17]
proposed to estimate SimRank scores of both static graph anddy-
namic graph by solving the eigenvectors of a large linear matrix.
However, their approach is limited to relatively small scale, and
not applicable for large scale network due to huge memory con-
sumption. Fogaras and Racz [8] suggested speeding up SimRank
computation through probabilistic computation via the Monte Car-
lo method. In another work, Yinet al. [26] employed a hierarchical
structure named SimTree for SimRank computation. By merging
computations through the same branches in SimTree, this method
saves a lot of computations. However, this method cannot solve the
computation problem in large networks. Yu et al [27] developed
an efficient SimRank algorithm which reduce the time complexi-
ty from O(n3) to O(min(n ·m,nlog27)). He and his colleagues
[11] employed graphics processing units (GPUs) to accelerate the
computation. Unlike [11] which utilizes GPU’s high memory bind-
width between graphic processing units, this paper aims to reduce
the communication traffic between mapper and reducers. There is
little similarity between the two algorithms due to significant dif-
ferences in MapReduce and GPUs.

10. CONCLUSION
In this paper we developed Delta-SimRank, a new efficient algo-

rithm for solving SimRank on a distributed cluster using MapRe-
duce. Our discussion starts from the analysis of the HFONG mod-
el, and then derives Delta-SimRank algorithm which can be used
to compute SimRank scores with less communication traffic and
faster speed. Our experiments on four real datasets verify the suc-
cess of Delta-SimRank. In the best case, we get up to 30 times
speed-up compared with the distributed SimRank algorithm.

11. ADDITIONAL AUTHORS
Additional authors: ChengXiang Zhai and Thomas S. Huang, e-

mail: czhai@cs.illinois.edu, huang@ifp.uiuc.edu,
University of Illinois at Urbana-Champaign.

12. REFERENCES[1] Mahout library. http://lucene.apache.org/mahout.
[2] I. Antonellis, H. Garcia-Molina, and C.-C. Chang.

Simrank++: Query rewriting through link analysis of the
click graph.Proc. VLDB Endow., 2008.

[3] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. InInternational

conference on World Wide Web, pages 501–510. ACM New
York, NY, USA, 2007.

[4] Y. Champclaux, T. Dkaki, and J. Mothe. Enhancing high
precision using structural similarities. InIADIS, volume 8,
pages 494–498, 2008.

[5] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, and A. Y.
Ng. Map-reduce for machine learning on multicore.NIPS,
2006.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters.OSDI, 2004.

[7] P. Doyle and J. Snell. Random walks and electric networks.
1984.

[8] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In WWW, 2005.

[9] D. Gillick, A. Faria, and J. DeNero. MapReduce: Distributed
Computing for Machine Learning, 2006.

[10] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for
optimally parallelizing belief propagation. AISTATS, 2009.

[11] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank
computation on large graphs with iterative aggregation. In
KDD, pages 543–552, 2010.

[12] G. Jeh and J. Widom. Simrank: A measure of
structural-context similarity. InIn KDD, 2002.

[13] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods
for the computation of PageRank.Linear Algebra and its
Applications, 386:51–65, 2004.

[14] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observations.ICDM, 2009.

[15] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting
positive and negative links in online social networks.WWW,
2010.

[16] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters.ACM Trans. KDD,
1(1), 2007.

[17] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of simrank for static and dynamic information
networks.EDBT, 2010.

[18] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks.Journal of the American
Society for Information Science and Technology,
58(7):1019–1031, 2007.

[19] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for simrank
computation.Proc. VLDB Endow., 1(1), 2008.

[20] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. InSIGMOD, pages 135–146.
ACM, 2010.

[21] F. McSherry. A uniform approach to accelerated pagerank
computation. InWWW, pages 575–582, 2005.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web. 1998.

[23] prepared by the Knowledge Discovery Laboratory in
University of Massachusetts. Dblp computer science
bibliography.
http://kdl.cs.umass.edu/data/dblp/dblp-info.html.

[24] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook. InWOSN,
2009.

[25] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient
boosted distributed decision trees. InCIKM ’09, 2009.

[26] X. Yin, J. Han, and P. S. Yu. Linkclus: efficient clustering via
heterogeneous semantic links. InVLDB ’06, 2006.

[27] W. Yu, X. Lin, and J. Le. A space and time efficient
algorithm for simrank computation. InAPWeb, pages
164–170, 2010.

[28] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
ICML, 2003.

	Introduction
	Problem Statement
	A Naive Implementation of SimRank on MapReduce
	 Harmonic Field on Node-Pair Graph
	Delta-SimRank
	Delta-SimRank on MapReduce
	Expanding Graphs
	Experiments
	Delta-SimRank vs. SimRank on Distributed Systems
	Distributed Computing vs. Single Core Computing
	Expanding Graph

	Related Works
	Conclusion
	Additional Authors
	References

