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Abstract—While distributed graph processing engines have
become popular for processing large graphs, these engines are
typically configured with a static set of servers in the cluster.
In other words, they lack the flexibility to scale-out or scale-
in the number of servers, when requested to do so by the
user. In this paper, we propose the first techniques to make
distributed graph processing truly elastic. While supporting on-
demand scale-out/in operations, we meet three goals: i) perform
scale-out/in without interrupting the graph computation, ii)
minimize the background network overhead involved in the scale-
out/in, and iii) mitigate stragglers by maintaining load balance
across servers. We present and analyze two techniques called
Contiguous Vertex Repartitioning (CVR) and Ring-based Vertex
Repartitioning (RVR) to address these goals. We implement our
techniques in the LFGraph distributed graph processing system,
and incorporate several systems optimizations. Experiments per-
formed with multiple graph benchmark applications on a real
graph indicate that our techniques perform within 9% and 21%
of the optimum for scale-out and scale-in operations, respectively.

I. INTRODUCTION

Large graphs are increasingly common – examples include
online social networks such as Twitter and Facebook, Web
graphs, Internet graphs, biological networks, and many others.
As a consequence, distributed graph processing has become
an attractive solution for batch processing of large graphs.
Google’s Pregel [21] and GraphLab [20] were two of the first
such distributed graph processing engines. Subsequently, the
research community has developed more efficient engines that
adopt the vertex-centric approach for graph processing, such
as LFGraph [13], PowerGraph [9] and GPS [25].

Today’s graph processing frameworks operate on statically
allocated resources; the user must decide resource require-
ments before an application starts. However, part-way through
computation, the user may desire to scale-out by adding more
machines (e.g., to speed up the computation), or scale-in by
lowering the number of machines (e.g., to reduce hourly costs).
The capability to scale-out/in when required by the user is
called on-demand elasticity. Alternatively, an adaptive policy
may request scale-out or in.1 Such a concept has been explored
for datacenters [7] [31], cloud systems [14] [22] [26], storage
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1This paper does not deal with the details of adaptive policies or triggers.
We focus instead on the on-demand mechanisms, which are an important
building block for such policies.

systems [5] [6] [23] [28] [29] and data processing frameworks
such as Hadoop [11] [12] and Storm [2]. However, on-demand
elasticity remains relatively unexplored in batch distributed
graph processing systems.

While partitioning techniques have been proposed to op-
timize computation and communication [9], these techniques
partition the entire graph across servers and are thus appli-
cable only at the start of the graph computation. On-demand
elasticity requires an incremental approach to (re-)partitioning
vertices on-demand. Solving the problem of on-demand elas-
ticity is also the first step towards adaptive elasticity (e.g.,
satisfying an SLA in a graph computation), for which our
techniques may be employed as black boxes.

A distributed graph processing system that supports on-
demand scale-out/in must overcome three challenges:

1) Perform scale-out/in without interrupting graph compu-
tation. A scale-out/in operation requires a re-assignment
of vertices among servers. During scale-out, new servers
must obtain some vertices (and their values) from exist-
ing servers. Similarly, during scale-in, vertices from the
departing servers must be re-assigned to the remaining
servers. These transfers must be done while minimally
affecting ongoing computation times.

2) Minimize the background network overhead involved in
the scale-out/in. To reduce the effect of the vertex transfer
on computation time, we wish to minimize the total
amount of vertex data transferred during scale-out/in.

3) Mitigate stragglers by maintaining load balance across
servers. Graph processing proceeds in iterations and
stragglers will slow the entire iteration down. Thus, while
re-assigning vertices at the scale-out/in point, we aim to
achieve load balance in order to mitigate stragglers and
keep computation time low.

Our approach to solving the problem of on-demand elastic-
ity and overcoming the above challenges is motivated by two
critical questions:

1) How (and what) to migrate? Which vertices from which
servers should be migrated in order to reduce the network
transfer volume and maintain load balance?

2) When to migrate? At what points during computation
should migration begin and end?

To answer the first question, we present and analyze two new
techniques. The first, called Contiguous Vertex Repartitioning



(CVR), achieves load balance across servers. However, it may
result in high overhead during the scale-out/in operation. Thus,
we propose a second technique, called Ring-based Vertex
Repartitioning (RVR), that relies on ring-based hashing to
lower the overhead. To address the second question (when
to migrate) concretely, we integrate our techniques into the
LFGraph graph processing system [13], and use our implemen-
tation to carefully decide when to begin and end background
migration, and when to migrate static vs. dynamic data. We
also use our implementation to explore systems optimizations
that make migration more efficient.

We performed experiments with multiple graph benchmark
applications on a real Twitter graph with 41.65 M vertices
and 1.47 B edges. Our results indicate that our techniques are
within 9% of an optimal mechanism for scale-out operations
and within 21% for scale-in operations.

II. HOW (AND WHAT) TO MIGRATE?

In this section, we address the question of which vertices
to migrate when the user requests a scale-out/in operation.

Most existing distributed graph processing systems use
the vertex-centric synchronous Gather-Apply-Scatter (GAS)
decomposition [9] [13] [20] [21] [25], and our techniques are
intended for such systems.2 In vertex-centric graph processing,
a vertex is the basic unit of processing. Graph processing
frameworks partition vertices or edges across servers. Com-
putation then proceeds in iterations (sometimes called super-
steps). In the synchronous GAS decomposition, each iteration
comprises of gather, apply, and scatter stages, wherein each
vertex first gathers values from its neighbors, processes and
applies the result, and then scatters the updated value to its
neighbors. Synchronization across servers may be enforced
either during intermediate stages (e.g., PowerGraph), or only
at the end of the iteration (e.g., LFGraph).

Assumptions: While some graph processing engines have
proposed “intelligent” mechanisms to partition vertices across
servers before computation starts (e.g., PowerGraph [9]), re-
cent studies have shown that these systems may consume
a large fraction of their total run time doing so [13]. For
instance, [13] demonstrated that when using PowerGraph to
run PageRank on the Twitter graph with 8 servers, 80% of the
total runtime was constituted by the intelligent partitioning
operation, with subsequent iterations only taking up 20%. As
a result, [13] concludes that intelligent partitioning techniques
are not worth the cost, and shows that hash-based partitioning
is simpler and can result in a faster graph computation time.

As a result of these studies, we assume that our distributed
graph processing engine relies on hash-based partitioning. Our
contributions are applicable to all major graph processing
engines, including LFGraph [13], Giraph [1], PowerGraph [9]
and GPS [25], all of which support hash-based partitioning.

In addition, we assume the graph can fit in-memory after
any scale-in operation. We also assume that no other jobs are

2We focus on specialized graph processing systems and exclude dataflow
systems such as GraphX [10] and Pregelix [3].

deployed alongside specialized distributed graph processing
systems. Papers such as [4] reinforce the second assumption,
alongside the reality that multi-tenancy for many of these
specialized systems is not well supported or even existent.

In this remainder of this section, we present two techniques
for on-demand elasticity in graph processing. Both techniques
assume hash-based partitioning, which works by consistently
hashing vertices to a vertex space using a function that assigns
m bit values to vertices (e.g., using a hash function like SHA-
1). The resulting hashed vertex space ranges from 0 to 2m−1,
where m may be set high to minimize collisions. Our two
techniques deal with two different and popular ways in which
hash-based partitioning is done in graph processing systems.

A. Contiguous Vertex Repartitioning (CVR)

Our first technique assumes that the hashed vertex space
is divided into as many partitions as there are servers, and
each server is assigned one partition. Partitions are equi-sized
in order to accomplish load-balancing. The top of Figure 1a
illustrates an example graph containing 100 vertices, split
across 4 servers. The vertex sequence (i.e., Vi) is random but
consistent due to our use of consistent hashing, and is split into
four equi-sized partitions which are then assigned to servers
S1−S4 sequentially.

Upon a scale-out/in operation, the key problem we need
to solve is: how do we assign the (new) equi-sized partitions
to servers (one partition per server), such that network traffic
volume is minimized? For instance, the bottom of Figure 1
shows the problem when scaling out from 4 to 5 servers. To
solve this problem, we now: 1) show how to reduce it to a
graph matching problem, and 2) propose an efficient heuristic.

When we scale-out/in, we repartition the vertex sequence
into equi-sized partitions. Assigning these new partitions in an
arbitrary fashion to servers may be sub-optimal and transfer
large amounts of vertex data across the network. For instance,
in the bottom of Figure 1a, we scale-out by adding one server,
resulting in five new partitions. Merely adding the new server
to the end of the server sequence and assigning partitions to
servers in that order results in 50 total vertices being moved.
On the other hand, Figure 1b shows the optimal solution for
this example, wherein adding the new server in the middle of
the partition sequence results in moving only 30 vertices.

To achieve the optimal solution, we consider the scale-out
problem formally (the solution for scale-in is analogous and
excluded for brevity). Let the cluster initially have N servers
S1, · · · ,SN . With a graph of V vertices, initially the size of each
partition Pold

i is Mold = V
N , where 1≤ i≤ N. Each j-th vertex

id is first hashed, and the resulting value Vj is initially used
to assign it to partition Pold

i where i =
⌈

V j
Mold

⌉
. If we add k

servers to this cluster, the size of each new partition becomes
Mnew = V

N+k . We label these new partitions as Pnew
i ,1 ≤ i ≤

N+k, and assign each j-th vertex, as usual, to a new partition
by first hashing the vertex id and using the resulting hash Vj

to partition Pnew
i where i =

⌈
V j

Mnew

⌉
.



(a) Sub-optimal partition assignment with total vertex transfer = 50 (b) Optimal partition assignment with total vertex transfer = 30

Figure 1: Scale-out from 4 (top) to 5 (bottom) servers using Contiguous Vertex Repartitioning (CVR). Fewer vertices are transferred in the
optimal partition assignment (30 vs. 50).

Next, we create a bipartite graph B, which contains: i) a
left set of vertices, with one vertex per new partition Pnew

i ,
and ii) a right set of vertices, with one vertex per server S j.
Each of the left and right sets contains (N + k) vertices. The
result is a complete bipartite graph, with the edge joining a
partition Pnew

i and server S j associated with a cost. The cost is
equal to the number of vertices that must be transferred over
the network if partition Pnew

i is assigned to server S j after
scale-out. In other words, the cost is equal to |Pold

j ∩Pnew
i |=

|Pold
j |+ |Pnew

i |− |Pold
j ∪Pnew

i |.
The problem of minimizing network transfer volume now

reduces to finding a minimum-cost perfect matching in B. This
is a well-studied problem, and an optimal solution can be
obtained by using the Hungarian algorithm [16]. However, the
Hungarian algorithm has O(N3) complexity [15], which may
be prohibitive for large clusters.

As a result, we propose a greedy algorithm that iterates
sequentially through S1, · · · ,SN , in that order.3 For each server
S j, the algorithm considers the new partitions with which it
has a non-zero overlap – due to the contiguity of partitions,
there are only O(1) such partitions. Among these partitions,
that which has the largest number of overlapping vertices
with Pold

j is assigned to server S j. Due to the linear order
of traversal, when S j is considered, S j is guaranteed to have
at least one (overlapping) candidate position. This makes the
greedy algorithm run efficiently in O(N). For example, in
Figure 1b, to determine the new partition for S1, we need to
consider only two partitions [V1,V20] and [V21,V40]. Next, we
need to consider partitions [V21,V40] and [V41,V60] and so on.
Section II-A provides a mathematical analysis of the optimal
server ordering that minimizes the network transfer volume.

We next analyze CVR for scale-out operations, and then for
scale-in operations. All proofs can be found in Appendix A.

1) Scale-out: Assume a computation is running on a graph
with V vertices, and suppose the user performs a scale-out
operation by adding one server. Consider a case where the
order of the old servers is retained, but the new server is
inserted at a position k, i.e., right after server Sold

k but before
Sold

k+1, 0 ≤ k ≤ N (there are N + 1 potential locations for

3A similar problem was studied in [8], but their approach is not load-
balanced.

adding the new server). We identify which insertion position
minimizes network traffic volume (proof is in Appendix A).

Theorem 1. Consider a cluster of N servers running a
computation on a graph with V vertices. Initially, the system
is load balanced (each server has V

N vertices). If we add a
new server to the cluster using our CVR approach, without
changing the order of the old servers, then the total network
transfer volume is minimized if the new server is added
immediately after old server S N

2
, i.e., halfway through the list

of old servers.

2) Scale-in: Assume a computation running on a graph
with V vertices and suppose the user performs a scale-in
operation by removing one server. We assume the user only
specifies the number of servers to remove, and we have
flexibility in selecting which server to remove – this is a
reasonable assumption, for instance, in graph computations
running on virtualized platforms. (If the user specifies the
particular server to remove, the problem is not challenging.)

We consider a case where the order of the old servers is
retained but the leaving server is removed from position k, i.e.,
right after server Sold

k−1 but before Sold
k+1 (1≤ k≤ N). This gives

us N total choices for removing the leaving server. Similarly to
Theorem 1, we now state which of these positions minimizes
network traffic volume (proof is in Appendix A).

Theorem 2. Consider a cluster of N servers running a
computation on a graph with V vertices. Initially, the system
is load balanced (each server has V

N vertices). If we remove
one server from the cluster using our CVR approach, then the
total network transfer volume is minimized if the leaving server
is removed immediately after old server S N+1

2
, i.e., halfway

through the list of old servers. The minimal number of vertices
transferred in this case is C∗si =

V×(N+1)
4×N .

While the technique discussed in this section ensures bal-
anced partitions, it may require a large number of partitions
to be re-assigned. This affects a large number of servers
because they all transfer vertices, which in turn reduces the
resources they can utilize in the ongoing iteration of the graph
computation, and prolongs completion time. This drawback
motivates our next approach.



B. Ring-based Vertex Repartitioning (RVR)

In this technique, we assume an underlying hash-based
partitioning that leverages Chord-style consistent hashing [28].
To maintain load balance, servers are not hashed directly to
the ring, but instead (as in Cassandra [18] and Riak [24]), we
assume each server is assigned an equi-sized segment of the
ring. Concretely, a server with ID ni is responsible for vertices
hashed in the interval (ni−1,ni], where ni−1 is ni’s predecessor.

Under this assumption, performing a scale-out/in operation
itself is straightforward – a joining server splits a segment with
its successor, while a leaving server gives up its segment to
its successor. For instance, in a scale-out operation involving
one server, the affected server receives its set of vertices from
its successor in the ring, i.e., a server ni takes the set of
vertices (ni−1,ni] from its successor ni+1. Scale-in operations
occur symmetrically: a leaving server ni migrates its vertex set
(ni−1,ni] to its successor ni+1 which will now be responsible
for the set of vertices in (ni−1,ni+1].

More generally, we can state that: a scale-out/in operation,
which involves k servers being added or removed at once
affects at most k existing servers. If some of the joining or
leaving servers have segments that are adjacent, the number
of servers affected would be smaller than k.

While this technique is minimally invasive to existing
servers and the ongoing graph computation, it may result
in load imbalance. We can mitigate load imbalance for the
scale-out case by intelligently deciding which point on the
ring to add the new server(s). For the scale-in case, we can
intelligently decide which server(s) to remove.

We next analyze our RVR technique for scale-out/in op-
erations with one server, and then with multiple servers. All
proofs appear in Appendix B.

1) One Server: We can state the following straightforward
theorems for our RVR technique:

Theorem 3. For a scale-out operation involving adding one
server to a balanced cluster, the minimal number of vertices
transferred by our RVR technique is V

2N .

Theorem 4. For a scale-in operation involving removing
one server from a balanced cluster, the number of vertices
transferred by our RVR technique is V

N .

In the former theorem, this minima occurs when the new
server is added half-way between two existing (old) servers.

2) Multiple Servers: As in Section II-A2, we assume that
we are given the number of servers to remove but have
flexibility in selecting which servers. When scaling-out/in with
multiple servers, more than one partition may be affected.
In both cases, our approach is to “spread out” the affected
portions over the ring over disjoint segments and consequently
preserving load balance. For instance, if we add servers to
disjoint old partitions in the ring during scale-out, then as
long as the cluster adds fewer than (N+1) additional servers,
the result of Theorem 3 holds. Similarly, as long as fewer
than (N

2 +1) servers are removed during scale-in, alternating
servers can be removed and the result of Theorem 4 holds.

However, RVR does not work when scaling out with more
than N servers or scaling in with more than N/2 servers. In this
case, we can more generally state the following two theorems
(proofs are in Appendix B).

Theorem 5. Consider a cluster with N servers running a
graph computation. Initially, each server has V

N vertices.
Consider a scale-out operation which adds k > N servers to
the cluster using RVR. Some subgroups of these new servers
will be added to the same old partition (we assume they are
equally distributed inside the old partition). Let m be the
maximum size of such a group, i.e., the maximum number of
new servers added to an old partition. Then, the approach of
spreading out is minimax (i.e., minimizes the maximum loaded
server) if (m−1)×N < k ≤ m×N.

Theorem 6. Consider a cluster with N servers running
a graph computation; initially each server has V

N vertices.
Consider a scale-in operation which removes k > N/2 servers
from the cluster using RVR. Some subgroups of these servers
will be removed contiguously from the ring. Let m be the
maximum size of such a group, i.e., the maximum number of
servers removed from an old partition. Then, the approach of
spreading in is minimax (i.e., minimizes the maximum loaded
server) if (m−1)×N

m < k ≤ m×N
m+1 .

C. Similarities

While CVR and RVR are different ways of hash-based
partitioning, there are some corner cases where our techniques
output the same new assignment of vertices to servers. One of
them is shown below (proof is in Appendix C).

Theorem 7. Consider a cluster with N servers each having
V
N vertices. If we add m×N servers or remove m×N

m+1 servers
(for m ≥ 1) using CVR, then the optimal position of servers
to be added or removed is same as their position with RVR.

III. WHEN TO MIGRATE?

Given the knowledge of which vertices must be migrated
and to where, we must now decide when to migrate them in
such a way that minimizes interference with normal execution.
Two types of data need to be migrated between servers: (i)
static data, including sets of vertex IDs, neighboring vertex IDs
and edge values to neighbors, and (ii) dynamic data, including
the latest values of vertices and latest values of neighbors.
Static data corresponds to graph partitions, while dynamic
data represents computation state. Once this migration is com-
pleted, the cluster can switch to the new partition assignment.

A. LFGraph Overview

We have incorporated our elasticity techniques into LF-
Graph [13], a vertex-centric graph processing framework. We
have chosen LFGraph because it offers low computation and
communication load, low pre-processing cost and low memory
consumption. However, our proposed techniques are not lim-
ited to LFGraph and can be incorporated into any synchronous
framework configured to use hash-based partitioning, such as
Giraph [1], PowerGraph [9], and GPS [25].



LFGraph uses hash-based partitioning of vertices across
servers for efficient pre-processing. Each server’s partition is
further divided into equi-sized vertex groups so that each group
can be assigned to a separate worker thread. Gather and scatter
phases across servers are independent of each other but are
synchronized using a barrier server.

B. Executing Migration

LFGraph uses a publish-subscribe mechanism. Before the
iterations start, each server subscribes to in-neighbors of the
vertices hosted by the server. Based on these subscriptions,
servers build a publish list for every other server in the cluster.
After each iteration, servers send updated values of the vertices
present in the publish lists to the respective servers. After a
scale-out/in operation, we perform the publish-subscribe phase
again to update the publish lists of servers.

1) First-cut Migration: A first-cut approach is to perform
migration of both static and dynamic data during the next
available barrier synchronization interval. However, when we
implemented this approach, we found that it added significant
overheads by prolonging that iteration. As a result, we intro-
duce our next two optimizations.

2) Static Data Migration: This technique is based on the
observation that static data can be migrated in the background
while computation is going on. Recall that static data consists
of vertex IDs, their neighboring vertex IDs and edge values to
neighbors. Only dynamic data (vertex values and neighboring
vertex values) needs to wait to be migrated during a barrier
synchronization interval (i.e., after such data is last updated).
This reduces the overhead on that iteration.

3) Dynamic Data Migration: LFGraph has two barrier
synchronization intervals. One interval is between the gather
and scatter phases and the other is after the scatter phase.
This gives us two options for the transfer of dynamic data.
We perform dynamic data transfer and cluster re-configuration
in the barrier synchronization interval between the gather and
scatter phases. This enables us to leverage the default scatter
phase to migrate neighboring vertex values. The scatter phase
simply considers the new set of servers in the cluster while
distributing updated vertex values. This optimization further
reduces the overhead on that iteration.

A scale-out/in operation that starts in iteration i ends in
iteration i + 2. Background static data migration occurs in
iterations i and i+1 while vertex value migration occurs after
the gather phase of iteration i+2. At this point, computation
continues on the new set of servers. The performance impact
due to background data migration is more in iteration i than in
iteration i+1, i.e., iteration times are longer in iteration i. This
is because a majority of the migration happens in iteration i.
In iteration i+1, servers build their new subscription lists for
the publish-subscribe phase.

To demonstrate further, we now describe the steps involved
in a scale-out: (1) The joining server sends a Join message
containing its IP address and port to the barrier server at
the start of iteration i. (2) The barrier server responds with
a Cluster Info message assigning the joining server an ID and

the contact information of the servers from which it should
request its vertices. (3) Additionally, the barrier server sends
an Add Host message to all servers informing them about the
new server in the cluster. (4) The joining server requests its
vertices with a Vertex Request message. (5) After receiving
its vertices, it informs the barrier server that it can join the
cluster with a Ready message. Concurrently, the servers start
updating their subscription lists to reflect the modifications
in the cluster servers (this is our Background subscription
lists optimization discussed in Section IV). (6) The barrier
server sends a Re-configure message to the servers in the
synchronization interval after gather phase of iteration i+ 2.
(7) Upon receiving the Re-configure message, joining servers
request the vertex values with a Vertex Value Request message.
Additionally, all servers update their vertex-to-server mapping
to reflect newly added servers. (8) The scatter phase of
iteration i+2 executes with this new mapping. From this point
on, computation proceeds on the new set of servers.

4) Role of Barrier Server: In our repartitioning techniques,
the barrier server accepts join and leave requests and deter-
mines an optimal partition assignment. We adopted this ap-
proach instead of a fully decentralized re-assignment because
of two reasons: i) fully decentralized re-assignment may lead
to complex race conditions, and ii) the barrier server, being
initialized, has the capability to obtain per-server iteration run
times via the barrier synchronization messages and assigns
new servers to alleviate the load on the busiest servers.

IV. OPTIMIZING MIGRATION

In this section, we discuss specific performance optimiza-
tions available for migration in frameworks such as LFGraph.

A. Parallel Migration

LFGraph uses consistent hashing to split the vertices as-
signed to a server (a partition) further into vertex groups, with
each vertex group assigned to a separate thread [13]. If two
servers are running the same number of threads, we can use
a parallel migration optimization that works as follows. The
(consistent hashing) ring inside each server is identical, as
are the segments of the ring (each segment corresponding to a
vertex group). As a result, there is a one-to-one correspondence
between segments (and thus threads) across two servers. On
a scale-out/in operation, data can be transferred directly and
parallely between these corresponding threads.

B. Efficiency vs. Overhead Trade-off

Speeding up the background migration via parallelism slows
the ongoing computation. On the other hand, if migration is
performed serially, the time taken for transferring vertex data
would increase. To achieve a balance between the two, we
propose two further optimizations:
• Thread-Count: Based on experimental results, we use

half as many threads as vertex groups. The result is a
conservative use of the network resource, at the expense
of slower background migration.



• Background Subscription Lists: We allow nodes to start
receiving information in the background (from the barrier
server) about joining or leaving servers. This allows them
to start building subscription lists before the actual cluster
re-configuration phase. This action can be performed in
parallel for each vertex group. However, based on experi-
mental results, we perform it serially to reduce the impact
on ongoing computation. Thus, we utilize parallelism
between foreground and background processes but not
across the tasks done in background.

C. Ring-based Optimizations

For scale-in operations using RVR, two further optimiza-
tions are possible:
• Modified Scatter: We perform a modified scatter phase

after vertex transfer where servers transfer vertex val-
ues, subscribed by leaving servers, to their respective
successors. Additionally, we leverage this scatter phase
to have a leaving server transfer all vertex values to its
successor while only subscribed values are sent to other
servers. This optimization allows the scatter phase to be
performed in parallel with cluster re-configuration after
scale-out/in operation. Additionally, it avoids using an
explicit vertex value migration step during the barrier
interval as leaving servers migrate the vertex values as
part of the modified scatter phase.

• Subscription Lists: For a scale-in, we quickly rebuild
subscription lists at each remnant (non-leaving) server by
merely appending the subscription list for a leaving server
S to S’s next remnant successor – in RVR, S’s successor
inherits leaving server S’s vertices. This avoids rebuilding
subscription lists from scratch at remnant servers.

V. EVALUATION

In this section, we experimentally evaluate the efficiency
and overhead of our elasticity techniques.

A. Experimental Setup

We perform our experiments with both our CVR and RVR
techniques on virtual instances each having 16 GB RAM and
8 VCPUs. We use a Twitter graph [17] containing 41.65 M
vertices and 1.47 B edges (with larger graphs, we expect sim-
ilar performance improvements). We evaluate our techniques
using five graph benchmarks: PageRank, single-source shortest
paths (SSSP), connected components, k-means clustering and
multiple-source shortest paths (MSSP).

B. Scale-out and Scale-in

Our first set of experiments measures the overhead ex-
perienced by the computation due to a scale-out operation.
Figure 2 shows two experiments that perform a scale-out from
X servers to 2X servers (for X ∈{5,10,15}), with the scale-out
starting at iteration i= 1 and ending at iteration 3. The vertical
axis plots the per-iteration run time. For comparison, we plot
the per-iteration times for a run with X servers throughout,
and a run with 2X servers throughout.

From Figures 2a, 2b and 2c, we observe that: i) both CVR
and RVR appear to perform similarly, and ii) after the scale-
out operation is completed, the performance of the scaled-
out system converges to that of a cluster with 2X servers,
demonstrating that our approaches converge to the desired
throughput after scale-out.

Similarly, Figure 3 shows the plots for scale-in from 2X
servers to X servers (for X ∈ {5,10,15}). Once again, the
cluster converges to the performance of X servers. However,
RVR has a lower overhead than CVR – this is due to the Ring-
based optimizations discussed for scale-in in Section IV-C.

C. Repartitioning Overhead

Figures 2 and 3 show the per-iteration time under different
scenarios, and demonstrate that iterations take longer during
scale-out/in. If the vertex migration had infinite bandwidth
available for it, then the scale-out/in could be done instantly
at the end of an iteration. We call this the Infinite Bandwidth
(IB) technique. In a sense, IB is optimal in that the network
overhead for transfer is not incurred at all. Comparing with IB
thus gives us an indication of how much worse our approach
is compared to the fastest possible network.

Figure 4 shows the overhead of our technique compared
to IB. The overhead captures the extra time spent by our
technique in running a graph computation during one scale-
out/in operation occurring from iteration i = 1 to i = 3. The
overhead is computed as follows. First, we assume IB instantly
scales-out/in after iteration i = 3 – thus we plot its timeline as
the timeline for X servers up to the third iteration and as the
timeline for 2X servers beyond the third iteration. We calculate
the overhead as the area of the plot between our technique’s
line and the IB line.

Figure 4 shows that for PageRank our techniques result in
less than 5% total overhead for scale-out compared to IB. For
scale-in operations, RVR incurs less than 8% total overhead
while CVR incurs less than 11% total overhead. Further, with
increasing cluster size, the percentage overhead falls for both
scale-out and scale-in – this is because less data must be
migrated per server as the cluster size increases.

For short computations with one scale-out/in operation,
affecting fewer servers, as achieved by RVR, is more important
than achieving an optimal assignment of vertices to servers.
However, the caveat is that if the graph computation were a
very long-running one, and involved multiple scale-out/in op-
erations during its lifetime, then RVR would create stragglers.

Scale-out vs. Scale-in Overhead We observe that the
overhead numbers in Figure 4 for scale-in are higher than
that of scale-out. This is purely an artifact of the way we
constructed the IB technique. Comparing Figures 2a and 3a
for instance, we notice that during scaling (iterations i = 1
to 3), the absolute overhead for scale-out and scale-in are
comparable (CVR line and RVR line both peak at about 26
s iteration time). However, for scale-in, IB’s curve is much
lower than it is for scale-out, because the former used a large
number of servers prior to the scaling and thus the per-iteration
time was lower. This results in the overhead (area between our
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Figure 2: Per-iteration execution time with scale-out at iterations i = 1 to i = 3, for different repartitioning strategies and cluster sizes.
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Figure 3: Per-iteration execution time with scale-in at iterations i = 1 to i = 3, for different repartitioning strategies and cluster sizes.

technique’s line and IB’s line during iterations i= 1 to 3) being
measured as higher for scale-in than for scale-out.

D. Scale-out and Scale-in at Various Points in Computation

We evaluate the effect of starting the scale-out/in operation
at different iterations in computation. Figure 5 shows this
overhead with 5 to 10 servers scale-out and 10 to 5 servers
scale-in performed at iterations i ∈ {1,2,3,4,5,6} with the
PageRank algorithm. The plot shows that our techniques
incur less than 6% overhead during scale-out and less than
11% overhead during scale-in, compared to IB. The absolute
overhead does not depend on the iteration number. However,
due to shorter later iterations in PageRank, the total execution
time of IB is larger if the scale-out is performed in later
iterations and smaller if the scale-in is performed in later
iterations. As a result, the percentage overhead increases if
the scale-in is performed in later iterations (Figure 5b).

E. Scale-out and Scale-in for Various Algorithms

Figure 6 shows the overhead incurred with the four other
graph benchmarks: SSSP, k-means clustering, connected com-
ponents and MSSP. For k-means clustering, we chose 100 as
the number of clusters. Even though k-means clustering spans
multiple sets of iterations with different sets of clusters, we
calculate overhead only in the set of iterations where the scale-
out/in operation is performed. For MSSP, we computed the
shortest paths to 10 landmark vertices in the graph.

The plots show that across algorithms, we incur less than
9% and 21% overhead for scale-out and scale-in respectively,

all compared to IB. The overheads for SSSP and k-means
clustering algorithms are higher than others because of a
smaller total execution time. The total execution time for SSSP
and k-means clustering algorithms is within 80-90 s, while it
is within 150-160 s for PageRank, within 120-130 s for con-
nected components and within 190-200 s for MSSP. Although
total execution time for MSSP is more than PageRank, MSSP
incurs a higher overhead due to larger stored vertex values
(shortest distance from 10 randomly chosen landmarks to the
vertex).

Scale-out/in operations took 2 iterations to complete for
connected components, but took 3 iterations for SSSP, k-means
clustering and MSSP due to shorter initial iterations.

VI. RELATED WORK

To the best of our knowledge, we are the first to explore
elasticity for distributed graph computations. However, elas-
ticity has been explored in many other areas.

A. Data Centers

AutoScale [7] enables elastic capacity management for data
centers. Its goal is to reduce power wastage by maintaining
just enough server capacity for the current workload. [31]
proposes solving the same problem using Model Predictive
Control framework.

B. Cloud and Storage Systems

CloudScale [26] and [14] propose mechanisms to scale-
up VM resources based on predicted application needs in an
Infrastructure as a Service (IaaS) environment. AGILE [22]
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Figure 4: PageRank overhead comparison with the Infinite Bandwidth (IB) Technique.
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Figure 5: PageRank overhead comparison with the Infinite Bandwidth (IB) Technique with scale-out/in at different iteration times (Ii represents
iteration i).

proposes mechanisms to scale-out VM resources based on
predicted application needs.

The authors of [23] propose a social partitioning and
replication middleware to enable efficient storage of social
network graphs. The technique enables the storage system to
scale-out/in based on need. Albatross [5] enables scaling of
multi-tenant databases using live migration. TIRAMOLA [29]
allows NoSQL storage clusters to scale-out or scale-in by
applying Markov Decision Process on the workload using
user-provided policies. Transactional Auto Scaler [6] proposes
another storage resource scaling mechanism that predicts
workload behavior using analytical modeling and machine
learning.

C. Data Processing Frameworks

Starfish [12] performs tuning of Hadoop parameters at job,
workflow and workload levels. The authors in [11] propose
Elastisizer which has the capability to predict cluster size for
Hadoop workloads. [2] proposes workload based scheduling
of Storm topologies.

D. Partitioning in Graph Processing

PowerGraph [9] performs vertex assignment using balanced
partitioning of edges. The aim is to limit number of servers
spanned by the vertices. Distributed GraphLab [19] proposes
a two-phase assignment of vertices to servers. The first phase
creates more partitions than the number of servers. In the
second stage, servers load their respective partitions based on

a balanced partitioning. This allows the graph to be loaded
in a distributed manner and the number of servers to change
without affecting the first phase. The authors in [27] discuss
partitioning strategies for streaming graph data. However,
elasticity is not explored. Using partitioning during a scale-
out/in operation is prohibitive as it partitions the entire graph
– in comparison, we do incremental repartitioning.

E. Dynamic Repartitioning in Graph Processing

[30] proposes a vertex migration heuristic between par-
titions, to maintain balance and reduce communication cost.
GPS [25] also proposes dynamic repartitioning of vertices by
co-locating vertices which exchange more messages with each
other. While these works do not explore on-demand elasticity
explicitly, our techniques are orthogonal and can be applied to
such systems. Concretely, our vertex re-partioning technique
(Section II-A) can be used in such systems by treating each
partition as the set of vertices currently assigned to that server
(instead of the hashed set of vertices, as we do).

VII. CONCLUSION

In this paper, we have proposed techniques to enable on-
demand elasticity operations in distributed graph processing
engines. Concretely, we proposed two techniques for deciding
what vertices to migrate: Contiguous Vertex Repartitioning
(CVR) and Ring-based Vertex Repartitioning (RVR). We also
integrated these techniques into the LFGraph graph processing
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Figure 6: Overhead comparison with the Ideal Technique with 5 to 10 servers scale-out and 10 to 5 servers scale-in in single-source shortest
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engine, and incorporated several optimizations. Our experi-
ments with multiple graph benchmarks and a real Twitter
graph show that: i) compared to the optimal approach, our
techniques incurred less than 9% overhead for scale-out and
less than 21% overhead for scale-in operations, and ii) our
techniques scale well.
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APPENDIX A
CONTIGUOUS VERTEX REPARTITIONING (CVR)

Proof. (Theorem 1) For a given value of k, let tso(i) be the
number of vertices migrated from the server at old position
i (1 ≤ i ≤ N). The servers at positions to the left of the new
server (i.e., i< k) will transfer some vertices to their immediate
right neighbors, while the servers to the right of this position
(i.e., i≥ k) transfer vertices to their left neighbors (see Figure 1
for an illustration). Initially, each server holds V

N vertices;
after scale-out, each server would hold V

N+1 vertices. Hence,
each server contributes (V

N −
V

N+1 ) vertices to its neighbor,
and these are accumulated across all old partitions to populate
the new server’s partition with (V

N −
V

N+1 )×N = V
N+1 vertices.

Servers which receive vertices from a neighbor pass on as
many vertices to their next neighbor, giving us:

tso(i = 1) =
V
N
− V

N +1
i f 0 < k ≤ N

tso(i = N) =
V
N
− V

N +1
i f 0≤ k < N

tso(i) = tso(i−1)+
V
N
− V

N +1
f or 1 < i≤ k

tso(i) = tso(i+1)+
V
N
− V

N +1
f or k < i < N

(1)

This can be solved to give:

tso(i) = i×
(

V
N× (N +1)

)
f or 1≤ i≤ k

tso(i) = (N− i+1)×
(

V
N× (N +1)

)
f or k < i≤ N

(2)

The total number of vertices migrated by all servers is:

Cso(k) =
N

∑
i=1

tso(i) =
V

N× (N +1)
×

(
i≤k

∑
i=1

i+
i≤N

∑
i=k+1

(N− i+1)

)

=
V

N× (N +1)
×
(

2× k2 +N2 +N−2× k×N
2

)
(3)

By solving for d
dkCso(k) = 0 (and checking that the second

derivative is positive), we find that Cso(k) is minimized when
k = k∗ = N

2 . The minimal number of vertices transferred is
therefore C∗so =

V×(N+2)
4×(N+1) .

Proof. (Theorem 2) For a given value of k, let tsi(i) be the
number of vertices migrated from the server at old position
i (1≤ i≤ N). The leaving server transfers V (k−1)

N(N−1) vertices to

its left neighbor while V (N−k)
N(N−1) vertices to its right neighbor.

This is because it proportionally transfers its vertex set to the
servers on its left and right side. The servers at positions to
the left of the leaving server (i.e., i < k) will transfer some
vertices to their immediate left neighbors, while the servers to
the right of this position (i.e., i > k) transfer vertices to their
right neighbors. Initially, each server holds V

N vertices. After
scale-in, each server would hold V

N−1 vertices. Thus, we have:

tsi(i = 1) = 0 i f 1 < k ≤ N

tsi(i = N) = 0 i f 1≤ k < N

tsi(i) = tsi(i+1)+
V
N
− V

N−1
f or 1 < i < k

tsi(i) = tsi(i−1)+
V
N
− V

N−1
f or k < i < N

(4)

This can be solved to give:

tsi(i) = (k− i)
(

−V
N× (N−1)

)
+

V × (k−1)
N× (N−1)

f or 1≤ i≤ k

tsi(i) = (i− k)
(

−V
N× (N−1)

)
+

V × (N− k)
N× (N−1)

f or k ≤ i≤ N

(5)
The total number of vertices migrated by all servers is:

Csi(k) =
N

∑
i=1

tsi(i) =
−V

N× (N−1)

(
i≤k

∑
i=1

(k− i)+
i≤N

∑
i=k

(i− k)

)

+(k−1)
V × (k−1)
N× (N−1)

+(N− k)
V × (N− k)
N× (N−1)

+
V
N

=
V

N× (N−1)

(
N2 +2k2−2Nk−2k−N +2

2

)
+

V
N
(6)

By solving for d
dkCsi(k) = 0 (and checking the second deriva-

tive is positive) we find that Csi(k) is minimized when
k = k∗ = N+1

2 . The minimal number of vertices transferred
is C∗si =

V×(N+1)
4×N .

APPENDIX B
RING-BASED VERTEX REPARTITIONING (RVR)

Proof. (Theorem 5) The proof follows from our strategy
of assigning the first N new servers each to a disjoint old
partition, then, in the second round, iterating through the next
N servers and assigning them again to the N old partitions, and
so on for d k

N e rounds. Since new servers are evenly distributed
inside an old partition, this achieves the minimax.

APPENDIX C
SIMILARITIES

Proof. (Theorem 7) A scale-out technique achieves the min-
imum total network transfer volume (number of vertices mi-
grated) if the extra vertices at existing servers due to scale-out
are directly migrated to the new servers. Similarly, a scale-in
technique achieves the minimum total network transfer volume
if the vertices from leaving servers are directly migrated to the
server that will finally be responsible for them. If we add m×N
servers or remove m×N

m+1 servers, we can achieve this by adding
m servers to each of the N existing partitions or removing m
servers from each of the N

m+1 remnant partitions. That is, the
optimal position of servers to be added or removed with RVR
is same as their position with CVR.


