
Building Trees Based On Aggregation Efficiency in
Sensor Networks

Albert F. Harris III, Robin Kravets, and Indranil Gupta
University of Illinois at Urbana-Champaign

email:{aharris,rhk,indy}@cs.uiuc.edu

Abstract— Sensor network protocols must minimize en-
ergy due to their resource-constrained nature. Large
amounts of redundant data are produced by the sensors in
such networks, however sending unnecessary data wastes
energy. One common technique used to reduce the amount
of data in sensor is data aggregation. Therefore, we consider
the impact and cost of data aggregation in sensor networks
to achieve energy efficient operation. We propose a new no-
tion of energy efficiencythat can be used to decide where
aggregation points in the network should be placed. The
main factor affecting energy efficiency is the location of the
data aggregation points. The optimal choice of these points
is determined by the aggregation efficiency, which deter-
mines the amount of data reduction. We present our ag-
gregation tree algorithm “Oceanus” that produces energy-
efficient aggregation trees by taking into account the aggre-
gation efficiency. Our evaluation shows that by using aggre-
gation efficiency, Oceanus provides higher energy efficiency
compared to existing solutions for data aggregation.

I. INTRODUCTION

Advances in computing and communication technolo-
gies have enabled the creation of small devices capable of
complex sensing and computation. While the goal is to
embed these devices into our surrounding environments,
energy consumption has become the main limiting fac-
tor of the lifetimes, and so effectiveness, of these sen-
sor networks. To support increased network lifetime, it is
necessary to design energy-efficient communication pro-
tocols. Although such protocols have been proposed in
the context of ad hoc networks [17], the data-centric focus
of sensor networks lends itself to better energy efficiency
through intelligent management of the data.

In typical communications scenarios for sensor net-
works, data about a particular event is collected by the
sensors and is then sent to a data sink, which can be any-
where in the network. Frequently, the sink may not re-
quire the original data from each individual sensor, but in-
stead only require an aggregate function (e.g., sum, aver-
age, etc.) of the collected data from all sensors. The ben-
efit of suchdata aggregationis that it can reduce the total

amount of data sent through the network, increasing net-
work performance and decreasing energy consumption.
However, the overall effectiveness of data aggregation is
dependent on where and when the aggregation actually
occurs. Although several data aggregation algorithms and
frameworks have been proposed [1], [10], [12], [13], [19],
finding the optimal aggregation points in the network is
still an open area of research.

Data aggregation changes the communication in the
network by allowing individual nodes to collect data sam-
ples from multiple sources and combine them to be trans-
mitted as one sample. Energy can be saved if the over-
all amount of data transmitted in the network is reduced
by the aggregation. Therefore, theenergy efficiencyof
such aggregation is affected by two metricsaggregation
efficiencyand aggregation cost. Aggregation efficiency
captures the amount of data compression achieved by the
aggregation function. If the aggregation ofn data sam-
ples results in one new data sample, the aggregation effi-
ciency is said to be perfect. However, if the result is sim-
ply then samples concatenated together, the aggregation
efficiency is poor, and only benefits from merging head-
ers. Although aggregation may be highly efficient and so
significantly reduce the amount of data transmitted, it is
also necessary to consider the computational cost of the
aggregation in the node. While some aggregation may be
cheap (e.g., simple sum), some aggregation may be com-
putational expensive (e.g., combining audio samples).

Since the goal of data aggregation is to reduce re-
dundancy in the communication, the best-suited delivery
network is a tree, where aggregation occurs when two
branches merge. The challenge, therefore, is to design al-
gorithms that understand aggregation efficiency and cost
to create trees with the most energy-efficient aggregation
points. As discussed in Section III-B, if the aggregation
algorithm is perfect (i.e., perfect efficiency and 0 cost), the
optimal aggregation tree is a Steiner Tree. Given an im-
perfect aggregation algorithm (i.e., less efficient and some
cost), the optimal aggregation tree is a Weighted Steiner
Tree. Although calculating a Steiner Tree, weighted or

unweighted, is NP-complete [4], it is possible to use some
heuristics to approximate the target Steiner Tree and use
this approximation as the aggregation tree in the sensor
network.

Current heuristic-based aggregation tree algorithms use
either opportunistic methods (e.g., Directed Diffusion [8])
or greedy incremental methods (e.g. Intanagonwiwat,et.
al. [7], [9]). In opportunistic methods, data flows through
shortest paths from the sources to the sink. In the event
that paths meet, the paths are joined to form an aggrega-
tion point. Such aggregation points tend to be close to the
sink because shortest path flows from different sources to
the same sink intersect downstream. In the greedy incre-
mental methods, one source initiates a shortest path flow
to the sink. Then, the other sources connect to that path
via shortest paths, which generally results in aggregation
points closer to the sources. However, the efficiency of
the greedy incremental method is entirely determined by
the first path and can result in very inefficient aggregation
trees. The main problem with both of these methods is
that they cannot consider aggregation cost, and so only
approximate a Steiner Tree.

To find the most energy-efficient aggregation tree, it is
necessary to understand the energy efficiency of the data
aggregation algorithm. In this paper, we use our formula-
tion of aggregation efficiency and cost to explore the en-
ergy efficiency of data aggregation. Essentially, we show
that if the aggregation efficiency is perfect and the cost is
free, the aggregation points should be as close as possible
to the sources to save the most energy. However, as the
aggregation efficiency degrades or the cost increases, the
optimal aggregation points drift towards the sink, since
the savings from the reduced communication no longer
outweighs the extra cost of aggregation.

The main contribution of our research is the design and
analysis of Oceanus, a heuristic-based aggregation tree al-
gorithm that approximates the optimal Weighted Steiner
Tree for a given aggregation efficiency and cost. By un-
derstanding the tradeoffs between aggregation efficiency
and cost, Oceanus creates trees with aggregation points
closer to the sources when efficiency is high and cost is
low and trees with aggregation points closer to the sink
when efficiency is low and/or cost is high. Our evalua-
tion of Oceanus shows that for most aggregation scenar-
ios, Oceanus saves energy over the shortest path tree, the
opportunistic method and the greedy incremental method.
We also notice that in extreme cases, where the sources
are topological isolated from each other, the opportunistic
method outperforms all others, since little or no aggrega-
tion is possible. This is a limitation of the heuristic-based
algorithm. However, in such cases, if the disjoint sources

are treated independently, Oceanus can again outperform
the other approaches.

The remainder of this paper is structured as follows.
Section II discusses energy consumption in sensor net-
works in terms of aggregation efficiency and cost and
presents a single metric that captures these relationships.
Section III presents four aggregation tree algorithms: the
optimal tree algorithm and the three heuristics algorithms,
including Oceanus. Section IV presents the methodol-
ogy used to analyze the aggregation efficiency space as
well as the simulation setup for experimentation. Sec-
tion IV-B presents our experimental results. Finally, Sec-
tion V presents conclusions and future directions for our
research.

II. ENERGY EFFICIENCY IN SENSORNETWORKS

Energy efficiency is a driving concern in the design and
implementation of sensor networks. When using data ag-
gregation, there are three components to energy consump-
tion in sensor networks: the energy consumed by con-
trol messages to set up the aggregation tree for a given
event, the energy consumed by all data transmissions for a
given event and the energy consumed by the aggregation
of the data at the aggregation points. While the energy
consumed by the control messages is relatively fixed for
a given network, there is a direct tradeoff between the en-
ergy consumed by the data transmissions and the energy
consumed by the aggregation. In this section, we define
the energy efficiency of data aggregation, which captures
this tradeoff. In the following section, we show how en-
ergy efficiency can be used to design aggregation tree al-
gorithms.

For a given event, data must flow from the source to
the sink, as determined by an initial interest notification
sent from the sink. Many algorithms have been proposed
to enable efficient interest notification ([1], [2], [5], [12],
[13], [16], [19]). For the non-opportunistic approaches,
some energy is consumed during coordination between
the sources and the sink to set up the aggregation tree.
Since sensor networks are relatively static, this paper fo-
cuses on the energy efficiency of static aggregation tree al-
gorithms. If enough nodes die so that the current tree can
no longer deliver the data, it is necessary to reconfigure
the tree, incurring some energy consumption from con-
trol messages. We are currently investigating the impact
of this control overhead and integrating it into a dynamic
aggregation tree algorithm.

Once sinks and sources have been coupled in a sensor
network, data can flow from the sources to the sink(s).
The energy consumed at each hop of a flow is determined
by the transmission rateR, the size of the header,H, and

the size of the data,D. Therefore, the per-hop transmis-
sion energy of a flow can be defined as:

Et =
H + D

R
× Ptrans,

wherePtrans is the device transmission energy. Whenever
flows from the same event intersect, it is possible to com-
bine their data into one flow. The resulting flow carries
the aggregated data and only uses one header. For exam-
ple, if n flows are being aggregated, where a packet from
flow i is [Hi,Di], the packets from the aggregated flow
are[Haggr,Daggr], whereDaggr = f(D1,D2, ...,Dn).

Although the goal is to reduce the number of bytes sent
and so reduce the energy consumed by the transmission,
it is possible thatEt could increase after the aggregation
if (Haggr + Daggr) >

∑
(Hi + Di). In other words, if the

aggregation function results in an aggregate that is larger
than the sum of the initial data sizes plus the size ofn −
1 headers, the aggregation function should not be used.
Therefore, we define aggregation efficiency as:

ξaggr =

∑
(Hi + Di)

Haggr + Daggr

.

If ξaggr > 1, the aggregation reduces the number of bytes
transmitted, and so reducesEt. If ξaggr < 1, aggregation
should not be performed.

While Et captures the energy to transmit, it is also nec-
essary to consider the cost of receiving the data and the
cost of running the aggregation function. The cost of re-
ceiving the data is also a function of the data sizeD and
is giving by:

Er =
H + D

R
× Precv.

Therefore, reducing the data size via data aggregation will
also reduce the cost of receiving the data by the down-
stream nodes. The cost of running the aggregation func-
tion (Eaggr) must be low enough so that it does not out-
weigh the savings inEt from the aggregation. More for-
mally, we define the energy efficiency of aggregation as
follows:

ξ =

∑
(Hi+Di)

R
× (Ptrans + Precv)

(Haggr+Daggr)
R

× (Ptrans + Precv) + Eaggr

.

If ξ is greater than one, data aggregation saves energy.
Otherwise, it is cheaper to simply send the independent
packets.

Energy efficiency obviously impacts the choice of an
aggregation tree. Essentially, as the aggregation efficiency
increases and the cost of the aggregation decreases, it is

more efficient to aggregate close to the sources. As the
aggregation efficiency decreases and the aggregation cost
increases, the most efficient aggregation points migrate to-
wards the sink. Current research, however, tends to look
at algorithms for creating aggregation trees and aggrega-
tion energy efficiency in isolation. In the next section, we
present various aggregation tree algorithms and discuss if
and how they can integrate energy efficiency.

III. A GGREGATION TREE ALGORITHMS

The focus of this work in on the effects of data aggre-
gation efficiency on choosing the aggregation tree in sen-
sor networks. There has been significant work in the ar-
eas of finding clusters of nodes to shift aggregation points
among nodes to increase network lifetime [3], [6], [11],
[15] and building general routing policy frameworks [10],
but these are orthogonal to this work. In this section,
we describe the optimal aggregation tree algorithm and
then consider three heuristics used to construct aggrega-
tion trees in sensor networks. The three heuristics are
opportunistic, greedy incremental, and Oceanus. In the
following sections, we evaluate the effect of energy effi-
ciency on each of these algorithms.

A. Link Energy Function

To find minimum cost aggregation trees, we model
the energy cost of a link as a function of the energy re-
quired to aggregate at the sender (if aggregation is not
performed, this is zero), the transmission energy expended
by the sender, and the receive energy expended by the re-
ceiver, whereD is the size of the data sent, including the
packet header,R is the data rate,Ptrans is the transmis-
sion power,Precv is the receive power, andEaggr is the
aggregation energy.

Elink = Eaggr +
D

R
× Ptrans +

D

R
× Precv (1)

This function captures the amount of energy for each data
segment transmitted on a link. The sum of each link’s
energy consumption for transmitting data yields the total
energy consumed by the aggregation tree.

B. Optimal Aggregation

The problem of finding a lowest cost aggregation tree
can trivially be reduced to the problem of finding a Steiner
tree in the graph. Formally, the Steiner tree of some sub-
set of the vertices of a graphG is a minimum-weight con-
nected subgraph ofG that includes all of the vertices.

Let G(V,E) be the set of all nodes in the sensor net-
work with non-negative weights for eache ∈ E corre-
sponding to the cost to transmit data over linke. Let

Z ⊆ V be the set of source nodes (si ∈ S, whereS ⊂ Z)
and the sink (k). The cost function is in terms of energy
consumed on each link for transmission of data across
that link. If the cost function for assigning the weights
includes data aggregation (see Equation 1), finding the
subnetworkT ⊆ G such that every pair of vertices in
Z is connected and the total cost ofT is a minimum is
equivalent to finding the minimum cost aggregation tree.
However, this is the Weighted Steiner Tree.

The determination of a Weighted Steiner Tree is NP-
complete [4]. Even if the edge weights are all equal (cor-
responding to a perfect aggregation algorithm), the prob-
lem remains NP-complete. Therefore, it is infeasible to
calculate the optimal aggregation tree and heuristics for
efficiently constructing aggregation trees are needed.

C. Opportunistic Aggregation

Opportunistic aggregation only aggregates streams if
they happen to intersect on their way to the source, (e.g.,
Directed Diffusion [8]). To achieve opportunistic aggre-
gation, each source begins sending streams to the receiver
via shortest path routes. As streams intersect, they are ag-
gregated.

Aggregation points are always downstream, towards
the sink. The more dispersed the source nodes are from
each other in the network, the less likely aggregation is
performed. Opportunistic algorithms tend to result in ag-
gregation trees with aggregation points close to the sink.
Such trees are beneficial if the energy efficiency of the ag-
gregation is low, meaning that the savings from aggregat-
ing early does not outweigh the additional communication
cost. However, opportunistic aggregation is less likely to
result in energy efficient aggregation trees for aggregation
functions with high efficiency and low cost.

D. Greedy Incremental Aggregation

The Greedy Incremental Aggregation algorithm
(e.g., [7]) begins by sending a single stream via a shortest
path route to the sink. Each additional stream is then
routed to a node participating in the first flow via a
shortest path. This method prevents two streams from
spanning the entire network only one hop apart.

Aggregation trees derived from this sort of algorithm
often have aggregation points that lie somewhere in the
middle of the network. This can yield significant effi-
ciency gains over opportunistically created aggregation
trees in cases where the aggregation algorithm has moder-
ate to high energy efficiency.

CALCULATE -TREE()
1 G : Set of Nodes
2 Z⊆ G: Source Nodes + Sink Node
3 S⊆ Z: Source Nodes
4 T: Nodes in Tree
5 T = {}
6 T′ ⊆ Z: Source and Sink nodes in Tree
7 T′ = {}
8 z∈ S:z is chosen randomly
9 x∈ Z: x is closest to z

10 Connect(x,z)
11 T= T + x + z + path(x,z)
12 T′ = T′ + z + x
13 while T′ 6= Z
14 do
15 x∈ Z: z is closest to z∈ T
16 Connect(x,z)
17 T= T + x + path(x,z)
18 T′ = T′ + x

Fig. 1. Oceanus Aggregation Tree Algorithm

E. Oceanus

Oceanus approximates the aggregation tree providing
the most energy-efficient communication using knowl-
edge of the energy efficiency of the aggregation algorithm.
Oceanus uses a heuristic-based algorithm that approxi-
mates a Weighted Steiner Tree, where the weights reflect
the energy efficiency of the aggregation algorithm. To
start, Oceanus randomly chooses one of the source nodes.
It then finds the node inZ that is closest to the chosen
node using a shortest path algorithm where the weights
on the paths are given by Equation 1. These nodes are
connected by this path. Then, the next node inZ that is
closest to the tree that has been already formed is chosen
and connected, and so on until a complete tree is obtained.
The aggregation tree is calculated according to the algo-
rithm depicted in Figure 1.

It is simple to see that this method results in each closest
sensor node being connected via a least cost path, where
cost is defined in terms of Equation 1. Since this is only a
heuristic, it is possible that this is not the Weighted Steiner
tree. If two nodes can be connected via two different least
cost paths, the intermediate node that is chosen may be
farther away from all of the remaining unconnected nodes
than the other choice of intermediate node.

To find the aggregation tree, we assume that the sink
node has knowledge of the sensor network topology.
When an event of interest happens, each sensor node
sends an initial notification of event to the sink node. At
that time, the sink calculates the aggregation tree and in-
forms the source nodes and the aggregation nodes of the

1

2

3 4 5

K

U

V

W X

Y

Z

A

B

E

D

C

Fig. 2. Network Event Scenarios (Scenario 1: Nodes 1-5 are sources,
Scenario 2: Nodes A-E are sources, Scenario 3: Nodes U-Z are
sources)

paths to follow. Currently, an aggregation tree is calcu-
lated for each independent event in the network, for each
sink. This is an implementation detail however, and could
be altered in future versions.

IV. EVALUATION

In this section, we analyze the three data aggregation
tree algorithms. The goal of this analysis is to determine
the most energy-efficient aggregation tree given varying
levels of aggregation efficiency.

We analyze the aggregation tree algorithms in terms of
the amount of energy spent transmitting sensor data. Be-
cause the algorithms are implemented in the ns2 network
simulator [14], a link energy model is required to provide
the energy analysis. We begin by presenting this model.
Next, the simulation set up is described. Finally, the per-
formance analysis is presented.

A. Simulation Setup

Our simulations are performed with the ns2 network
simulator. The sensor network consists of a 100 node net-
work laid out on a grid. Each node in the middle of the
grid has 8 one-hop neighbors. The sensor data size is 64
bytes and the packet header size is 6 bytes. Each node
has a transmit power of 36mW and a receive power of
5.4mW. These values were chosen to model a common
sensor node [18]. The data transmission rate of the nodes
is 40Kbps.

We consider three sensor scenarios. The first scenario is
where an event occurs at the corner of the sensor network
(see Figure 2, nodes 1-5 are sources). This is a common
model for data aggregation studies. The second scenario

is where an event occurs in the middle of the network (see
Figure 2, nodes A-E are sources). The final scenario is
where events occur at the edges of the network (see Fig-
ure 2, nodes U-Z are sources).

In all scenarios, the sink is placed near the bottom edge
of the network. For the simulations, no mobility is used
since we assume a static sensor network. Additionally, we
do not consider node failure.

B. Experimental Results

Two groups of results are presented in this section. The
first group evaluates the performance of Oceanus, the op-
portunistic algorithm, the greedy incremental algorithm,
and sending the data via shortest path routes for a perfect
aggregation algorithm with no cost. The second group of
results evaluates the performance of these methods across
aggregation algorithms with varying aggregation efficien-
cies, but no aggregation cost. Varying the aggregation
cost has the same effect. For all experiments presented
here, we consider only the energy expenditure of nodes
within the aggregation tree. This is reasonable because
the focus of this paper is finding the minimum cost aggre-
gation trees in terms of energy. Developing algorithms for
putting nodes to sleep that are not part of the aggregation
tree is outside the scope of this work.

1) Perfect Aggregation:The results in this section use
a perfect aggregation function. There is no cost for ag-
gregation and the amount of data sent after aggregation is
64 bytes, the same as a unit of sensor data, no matter how
many flows are being aggregated. Therefore, the optimal
aggregation trees aggregate flows as close to the sources
as possible. These experiments explore the most efficient
end of the aggregation spectrum. For each of the three
algorithms tested, opportunistic, greedy incremental, and
Oceanus, the algorithms are run over 10 varying networks
conforming to the three basic configurations. The results
presented are the average results from these runs. The
graphs in this section are normalized to the energy ex-
penditure in mJ of sending each sensor’s data via a short-
est path link with no aggregation. This yields percentage
savings over the shortest path, no aggregation method for
each of the algorithms.

Figure 3 depicts the energy savings for networks where
the sensors are clustered in a corner of the network. Be-
cause the nodes are clustered, the opportunistic algorithm
has a reasonable likelihood of causing two streams to flow
to the sink only one hop away from each other. However,
the greedy incremental algorithm is able to aggregate the
flows somewhat near to the sources. Oceanus, on the other
hand, links all of the nodes together in a chain , aggregat-
ing at the sources, and transmits through the closest node

Fig. 3. Perfect Aggregation, Network 1

Fig. 4. Perfect Aggregation, Network 2

to the sink with high probability. Oceanus uses 26% less
the energy then the baseline and about 15% less than the
greedy incremental algorithm.

Figure 4 depicts the energy savings for networks where
the sensors are surrounding an event in the middle of the
network. In this scenario, it is likely that the nodes on
the side of the event away from the sink will aggregate
with nodes closest to the sink rather early. For the greedy
incremental algorithm, it is more likely that the nodes ag-
gregate close to the sources. Oceanus sends data around
the event in a ring, aggregating at each source, and then
connects the ring to the sink via one of the source nodes.
Oceanus uses 40% less energy then the baseline and about
10% less energy than the greedy incremental algorithm.

Figure 5 depicts the energy savings for networks where
the sensors are on different edges of the network. This
scenario represents a difficult case. With high probabil-
ity, the opportunistic algorithm can only aggregate those

Fig. 5. Perfect Aggregation, Network 3

nodes in each sector of the network. Therefore, it is likely
that multiple independent streams will be sent through
the network without aggregation. The greedy incremen-
tal algorithm will likely send all data across the center
of the network, aggregating in the middle, depending on
which stream begins first. Oceanus routes data around
the edges of the network, in a large circle, from source
node to source node, aggregating at the sources. Oceanus
uses 43% less energy than the baseline and about 10%
less energy than the greedy incremental algorithm. This
scenario is the worst case for the opportunistic algorithm.
As expected, the greedy incremental method and Oceanus
perform well, with Oceanus providing greater energy effi-
ciency by routing through all of the source nodes. There-
fore, for perfect aggregation functions, Oceanus outper-
forms all other aggregation methods.

The total energy consumed for varying lengths of data
flows from 1 sensor data packet from each sensor to 100
packets from each sensor was also tested for perfect ag-
gregation. The longer the flows go on, the cost of set-
ting up the aggregation tree is amortized over the length
of the flow. For each of the three algorithms tested, op-
portunistic, greedy incremental, and Oceanus, we ran the
algorithms over 10 varying networks conforming to the
three basic configurations. This showed the trends in the
data over a range of length of flows. Since the none of
the aggregation trees can be set up before the first packets
are received, all of the algorithms have the same energy
consumption as the Shortest Path flows. However, as the
flows progress, each of the algorithms’ energy consump-
tions diverge. As expected, the results remained the same
as presented in Figures 3-5, with the gaps between the tree
algorithms increasing roughly linearly as the flow lengths
increased.

Fig. 6. Energy Consumption vs. Aggregation Efficiency, Network 1

2) Varying the Aggregation Efficiency:The locations
of the optimal aggregation points depends on the effi-
ciency of the aggregation algorithm. Oceanus attained
the most efficient communication for perfect aggregation
functions by aggregating data close to the source nodes.
However, as the efficiency of the aggregation algorithm
decreases, the optimal aggregation points move closer to
the sink node.

The graphs in this section present the amount of energy
to send 100 sensor packets from each sensor node to the
sink using the three aggregation methods (opportunistic,
greedy incremental, and Oceanus) as well as shortest path
routing. The x-axis of the graphs represent the amount
of data compression achieved by the aggregation func-
tion. Zero represents a perfect aggregation function and
one represents simple concatenation.

Figure 6 depicts the energy consumed for varying ag-
gregation efficiencies in a network where the sources are
in the corner of the network. The opportunistic algorithm
curve is rather linear, as expected. This is because the
data aggregation is performed only if shortest paths from
the source nodes cross. Therefore, it is affected least by
changes in the aggregation efficiency. Both the greedy
incremental method and Oceanus begin to perform more
poorly as the aggregation efficiency decreases. This is be-
cause the benefit of aggregation shrinks below the possi-
ble increase in hops a flow makes to reach an aggrega-
tion point. However, because the sources are collected
in a corner of the network, no path is lengthened signifi-
cantly. Therefore, both the greedy incremental algorithm
and Oceanus continue to outperform the opportunistic by
a significant margin, with Oceanus always being the most
efficient.

Figure 7 depicts the energy consumed for varying ag-

Fig. 7. Energy Consumption vs. Aggregation Efficiency, Network 2

Fig. 8. Energy Consumption vs. Aggregation Efficiency, Network 3

gregation efficiencies in a network where the sources are
circled around an event in the middle of the network.
Again, the curve for the opportunistic method is roughly
linear as expected and both the greedy incremental algo-
rithm and Oceanus begin to suffer as the aggregation al-
gorithm becomes less efficient. This time however, the
greedy incremental algorithm begins to consume more
energy than the opportunistic algorithm for efficiencies
close to simple concatenation. This is because some paths
are lengthened to reach aggregation points, but the gain
in aggregation no longer outweighs these path increases.
Oceanus continues to be the most efficient algorithm in
this case as well. This is because its gains in aggrega-
tion follow along the shortest links to the source node and
therefore still outweigh any increases in path length.

Figure 8 depicts the energy consumed for varying ag-
gregation efficiencies in a network where the sources are

around the sides of the network. As the graph shows, it
is the worst case for Oceanus at poor aggregation effi-
ciencies. Around 82% aggregation efficiency, the oppor-
tunistic algorithm begins to outperform Oceanus. This is
because, the Oceanus algorithm always tries to perform
some aggregation, but in this case, this causes poor per-
formance for the worst aggregation efficiencies. However,
Oceanus continuously outperforms the greedy incremen-
tal algorithm.

3) Summary: Oceanus significantly outperforms both
the opportunistic method as well as the greedy incre-
mental method of aggregation for perfect aggregation
functions. Furthermore, in all three network scenarios,
Oceanus outperforms the greedy incremental method for
all aggregation function efficiencies. However, for ag-
gregation efficiencies in the worst 18%, the opportunistic
method outperforms Oceanus in the scenarios where the
sources are scattered on all sides of the network. How-
ever, this scenario is unlikely, since it is rare that data
from events occurring in completely different areas of the
network will be aggregated. Therefore, in most realis-
tic scenarios, Oceanus outperforms both the opportunistic
method and the greedy incremental method of data aggre-
gation. This is because of Oceanus takes into account the
energy efficiency of the aggregation algorithm in creating
its aggregation trees. Finding efficient data aggregation
algorithms is itself the topic of other work; however, the
more efficient the aggregation algorithms, the more effi-
ciently data can be transmitted through a sensor network.

V. CONCLUSIONS ANDFUTURE WORK

This paper has explored the aggregation efficiency
space and where aggregation points should be located
within a sensor network to provide energy efficient com-
munication. We have demonstrated that for high en-
ergy efficient aggregation algorithms, aggregation points
should lie close to the sources of the data. However, as ag-
gregation efficiency decreases, aggregation points should
be migrated towards the sink. Therefore, we present
Oceanus, which builds the aggregation trees based on
the efficiency of the aggregation algorithm. We have
shown that Oceanus outperforms both the opportunistic
and the greedy incremental methods over a range of net-
work topologies and aggregation efficiencies.

This analysis suggests a future direction for aggregation
tree algorithm design. A distributed algorithm that mi-
grates the aggregation points towards the source for high-
efficiency aggregation algorithms and towards the sink
for low efficiency algorithms is a future direction. Fu-
ture work also consists of finding energy efficient means

of taking care of failures in the network and consider-
ing adding load-balancing. We have not implemented
any load balancing mechanism, or fault tolerance into
Oceanus.

REFERENCES

[1] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database
systems. InMobile Data Management, 2001.

[2] M. Chu, H. Haussecker, and F. Zhao. Scalable information-
driven sensor querying and routing for ad-hoc heterogeneous
sensor networks. InIntl J. High Performance Computing Ap-
plications, 2002.

[3] Qing Fang, Feng Zhao, and Leonidas Guibas. Lightweight sens-
ing and communication protocols for target enumeration andag-
gregation. InMobiHoc, 2003.

[4] M. Garey and D. Johnson.Computers and Intractability. Free-
man, San Francisco, CA, 1979.

[5] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin,
and S. Shenker. The sensor network as a database. Techni-
cal Report 02-771, Computer Science Department, University of
Southern California, September 2002.

[6] Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan. Energy-efficient communication protocol for wirelessmi-
crosensor networks. InProceedings of the Hawaii International
Conference on System Sciences, 2000.

[7] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann.
Impact of network density on data aggregation in wireless sensor
networks. InICDCS, 2002.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directeddiffu-
sion: A scalable and robust communication paradigm for sensor
networks. InMobiCom, 2000.

[9] B. Krishnamachari, D. Estrin, and S. Wicker. The impact of data
aggregation in wireless sensor networks. InDEBS, 2002.

[10] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk
Shin, Phillip Hutto, Arnab Paul, and Umakishore Ramachandran.
Dfuse: A framework for distributed data fusion. InProceeding of
the First International Conference on Embedded Network Sensor
Systems, 2003.

[11] Stephanie Lindsey, Cauligi Raghavendra, and Krishna
Sivalingam. Data gathering algorithms in sensor networks
using energy metrics. IEEE Transactions on Parallel and
Distributed Systems, 13(9), 2002.

[12] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: A
tiny aggregation service for ad-hoc sensor networks. InOSDI,
2002.

[13] Samuel Madden, Michael Franklin, Joseph Hellerstein,and Wei
Hong. The design fo an acquisitional query processor for sensor
networks. InSIGMOD, 2003.

[14] ns2 Network Simulator. http://www.isi.edu/nsnam/ns/.
[15] Younis Ossama and Sonia Gahmy. Heed: A hybrid, energy-

efficient, distributed clustering apporach for ad-hoc sensor net-
works. IEEE Transactions on Mobile Computing, 3(4), 2004.

[16] Narayanan Sadagopan, Bhaskar Krishnamachari, and Ahmed
Helmy. The aquire mechanism for efficient querying in sensor
networks. InSNPA, 2003.

[17] C. Sengul and R. Kravets. Conserving energy with on-demand
topology management. InSecond IEEE International Confer-
ence on Mobile Ad Hoc and Sensor Systems (MASS), November
2005.

[18] XBOW. 2nd generation micamote. http://www.xbow.com.
[19] Y. Yao and J. Gehrke. The cougar approach to in-network query

processing in sensor networks. InSIGMOD, 2002.

