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Abstract— Sensor network protocols must minimize en- amount of data sent through the network, increasing net-
ergy due to their resource-constrained nature. Large work performance and decreasing energy consumption.
amounts of redundant data are produced by the sensors in However, the overall effectiveness of data aggregation is
such networks, however sending unnecessary data WaSte?jependent on where and when the aggregation actually
energy. One common technique used to reduce the amount ' .

occurs. Although several data aggregation algorithms and

of datain sensor is data aggregation. Therefore, we conside
the impact and cost of data aggregation in sensor networks frameworks have been proposed [1], [10], [12], [13], [19],

to achieve energy efficient operation. We propose a new no-finding the optimal aggregation points in the network is
tion of energy efficiencythat can be used to decide where still an open area of research.
aggregation points in the network should be placed. The Data aggregation changes the communication in the
dmaln factor affecting ener%)]/ efnc!encly 'ﬁ‘ the Iofca;]non ofte  network by allowing individual nodes to collect data sam-
data aggregation points. The optimal choice of these points ples from multiple sources and combine them to be trans-
is determined by the aggregation efficiency, which deter- ™ . .

mitted as one sample. Energy can be saved if the over-

mines the amount of data reduction. We present our ag- ] . .
gregation tree algorithm “Oceanus” that produces energy- all amount of data transmitted in the network is reduced

efficient aggregation trees by taking into account the aggre by the aggregation. Therefore, tie@ergy efficiencyf
gation efficiency. Our evaluation shows that by using aggre- such aggregation is affected by two metraggregation
gation efficiency, Oceanus provides higher energy efficiepc efficiencyand aggregation cost Aggregation efficiency
compared to existing solutions for data aggregation. captures the amount of data compression achieved by the
aggregation function. If the aggregation ofdata sam-
ples results in one new data sample, the aggregation effi-
. INTRODUCTION ciency is said to be perfect. However, if the result is sim-
Advances in computing and communication technol@ly the n samples concatenated together, the aggregation
gies have enabled the creation of small devices capableefifciency is poor, and only benefits from merging head-
complex sensing and computation. While the goal is &¥S. Although aggregation may be highly efficient and so
embed these devices into our surrounding environmengégnificantly reduce the amount of data transmitted, it is
energy consumption has become the main limiting faglso necessary to consider the computational cost of the
tor of the lifetimes, and so effectiveness, of these seaggregation in the node. While some aggregation may be
sor networks. To support increased network lifetime, it igheap €.9, simple sum), some aggregation may be com-
necessary to design energy-efficient communication pretational expensivee(g, combining audio samples).
tocols. Although such protocols have been proposed inSince the goal of data aggregation is to reduce re-
the context of ad hoc networks [17], the data-centric focasindancy in the communication, the best-suited delivery
of sensor networks lends itself to better energy efficiencyetwork is a tree, where aggregation occurs when two
through intelligent management of the data. branches merge. The challenge, therefore, is to design al-
In typical communications scenarios for sensor negorithms that understand aggregation efficiency and cost
works, data about a particular event is collected by tlte create trees with the most energy-efficient aggregation
sensors and is then sent to a data sink, which can be apgints. As discussed in Section IlI-B, if the aggregation
where in the network. Frequently, the sink may not relgorithm is perfecti(e., perfect efficiency and 0 cost), the
quire the original data from each individual sensor, but iroptimal aggregation tree is a Steiner Tree. Given an im-
stead only require an aggregate functierg( sum, aver- perfect aggregation algorithmé., less efficient and some
age, etc.) of the collected data from all sensors. The bamst), the optimal aggregation tree is a Weighted Steiner
efit of suchdata aggregations that it can reduce the totalTree. Although calculating a Steiner Tree, weighted or



unweighted, is NP-complete [4], it is possible to use sonaee treated independently, Oceanus can again outperform
heuristics to approximate the target Steiner Tree and ube other approaches.

this approximation as the aggregation tree in the sensofThe remainder of this paper is structured as follows.
network. Section Il discusses energy consumption in sensor net-

Current heuristic-based aggregation tree algorithms ugerks in terms of aggregation efficiency and cost and
either opportunistic methods.g, Directed Diffusion [8]) Presents a single metric that captures these relationships
or greedy incremental methods.g. Intanagonwiwatet. Section Ill presents four aggregation tree algorithms: the
al. [7], [9]). In opportunistic methods, data flows througt®ptimal tree algorithm and the three heuristics algorithms
shortest paths from the sources to the sink. In the evépgluding Oceanus. Section IV presents the methodol-
that paths meet, the paths are joined to form an aggre§ay used to analyze the aggregation efficiency space as
tion point. Such aggregation points tend to be close to th€ll as the simulation setup for experimentation. Sec-
sink because shortest path flows from different sourcestt@n I1V-B presents our experimental results. Finally, Sec-
the same sink intersect downstream. In the greedy inct®@n V presents conclusions and future directions for our
mental methods, one source initiates a shortest path fleggearch.
to the sink. Then, the other sources connect to that path
via shortest paths, which generally results in aggregation|l. ENERGY EFFICIENCY IN SENSORNETWORKS

points closer to the sources. However, the efficiency OfEnergy efficiency is a driving concern in the design and
the greedy incremental method is entirely determined Wuplementation of sensor networks. When using data ag-
the first path and can result in very inefficient aggregaticg}egation, there are three components to energy consump-
trees. The main probl_em with both_ of these methods §3, in sensor networks: the energy consumed by con-
that they cannot consider aggregation cost, and so ogly| messages to set up the aggregation tree for a given
approximate a Steiner Tree. event, the energy consumed by all data transmissions for a
To find the most energy-efficient aggregation tree, it i§iven event and the energy consumed by the aggregation
necessary to understand the energy efficiency of the dafahe data at the aggregation points. While the energy
aggregation algorithm. In this paper, we use our formulgonsumed by the control messages is relatively fixed for
tion of aggregation efficiency and cost to explore the eg-given network, there is a direct tradeoff between the en-
ergy efficiency of data aggregation. Essentially, we shasygy consumed by the data transmissions and the energy
that if the aggregation efficiency is perfect and the costé®nsumed by the aggregation. In this section, we define
free, the aggregation points should be as close as possthle energy efficiency of data aggregation, which captures
to the sources to save the most energy. However, as {hig tradeoff. In the following section, we show how en-
aggregation efficiency degrades or the cost increases, #igy efficiency can be used to design aggregation tree al-
optimal aggregation points drift towards the sink, sincgorithms.
the savings from the reduced communication no longerror a given event, data must flow from the source to
outweighs the extra cost of aggregation. the sink, as determined by an initial interest notification
The main contribution of our research is the design arsgnt from the sink. Many algorithms have been proposed
analysis of Oceanus, a heuristic-based aggregation treg@lenable efficient interest notification ([1], [2], [5], 12
gorithm that approximates the optimal Weighted Steingt3], [16], [19]). For the non-opportunistic approaches,
Tree for a given aggregation efficiency and cost. By usome energy is consumed during coordination between
derstanding the tradeoffs between aggregation efficieritye sources and the sink to set up the aggregation tree.
and cost, Oceanus creates trees with aggregation pofdilsce sensor networks are relatively static, this paper fo-
closer to the sources when efficiency is high and costdases on the energy efficiency of static aggregation tree al-
low and trees with aggregation points closer to the simgorithms. If enough nodes die so that the current tree can
when efficiency is low and/or cost is high. Our evaluaao longer deliver the data, it is necessary to reconfigure
tion of Oceanus shows that for most aggregation scentire tree, incurring some energy consumption from con-
ios, Oceanus saves energy over the shortest path tree ttbemessages. We are currently investigating the impact
opportunistic method and the greedy incremental methaf.this control overhead and integrating it into a dynamic
We also notice that in extreme cases, where the soureggregation tree algorithm.
are topological isolated from each other, the opportunisti Once sinks and sources have been coupled in a sensor
method outperforms all others, since little or no aggregaetwork, data can flow from the sources to the sink(s).
tion is possible. This is a limitation of the heuristic-bdseThe energy consumed at each hop of a flow is determined
algorithm. However, in such cases, if the disjoint sourcéxy the transmission rat&, the size of the headef/, and



the size of the datal). Therefore, the per-hop transmisimore efficient to aggregate close to the sources. As the

sion energy of a flow can be defined as: aggregation efficiency decreases and the aggregation cost
H+D increases, the most efficient aggregation points migrate to
E, = ; X Piranss wards the sink. Current research, however, tends to look

at algorithms for creating aggregation trees and aggrega-
whereP,,.,s is the device transmission energy. Whenevédion energy efficiency in isolation. In the next section, we
flows from the same event intersect, it is possible to corpresent various aggregation tree algorithms and discuss if
bine their data into one flow. The resulting flow carriegnd how they can integrate energy efficiency.
the aggregated data and only uses one header. For exam-
ple, if n flows are being aggregated, where a packet from [1l. AGGREGATION TREE ALGORITHMS
flow i is [H;, D;], the packets from the aggregated flow The focus of this work in on the effects of data aggre-
are[Haggr, Daggr], WhereDy gy = f(D1, D2, ..., Dy).  gation efficiency on choosing the aggregation tree in sen-
Although the goal is to reduce the number of bytes segér networks. There has been significant work in the ar-
and so reduce the energy consumed by the transmissi@as of finding clusters of nodes to shift aggregation points
it is possible thatr; could increase after the aggregatiommong nodes to increase network lifetime [3], [6], [11],
if (Haggr + Daggr) > >-(H; + D;). In other words, if the [15] and building general routing policy frameworks [10],
aggregation function results in an aggregate that is larggjt these are orthogonal to this work. In this section,
than the sum of the initial data sizes plus the size of we describe the optimal aggregation tree algorithm and
1 headers, the aggregation function should not be useien consider three heuristics used to construct aggrega-
Therefore, we define aggregation efficiency as: tion trees in sensor networks. The three heuristics are
opportunistic, greedy incremental, and Oceanus. In the
= M followin [ i-
= . g sections, we evaluate the effect of energy effi
Haggr + Daggr ciency on each of these algorithms.

If £aggr > 1, the aggregation reduces the number of bytes _

transmitted, and so reducés. If &,,, < 1, aggregation A- Link Energy Function

should not be performed. To find minimum cost aggregation trees, we model
While E; captures the energy to transmit, it is also ne¢he energy cost of a link as a function of the energy re-

essary to consider the cost of receiving the data and thaired to aggregate at the sender (if aggregation is not

cost of running the aggregation function. The cost of rggerformed, this is zero), the transmission energy expended

ceiving the data is also a function of the data sizand by the sender, and the receive energy expended by the re-

gaggr

IS giving by: ceiver, whereD is the size of the data sent, including the
packet headerR is the data ratepP;..,s is the transmis-
B - H ;; D X Procy. sion power, Frecy is the receive power, anfl,,,, is the
aggregation energy.

Therefore, reducing the data size via data aggregation will D D

also reduce the cost of receiving the data by the down-  Eiink = Eaggr + R * Pirans + R X Preew (1)
stream nodes. The cost of running the aggregation func-. ,

tion (Eaggr) Must be low enough so that it does not out! his function captures the amount of energy for each_ data
weigh the savings i, from the aggregation. More for- segment transmitted on a link. The sum of each link’s

mally, we define the energy efficiency of aggregation &'€r9Y consumption for transmitting data yields the total
energy consumed by the aggregation tree.

follows:
. w % (Prans + Precs) B. Optimal Aggregation
(HagngI;Daggr) X (Prrans + Precy) + Eaggr The problem of finding a lowest cost aggregation tree

can trivially be reduced to the problem of finding a Steiner
If £ is greater than one, data aggregation saves enefgge in the graph. Formally, the Steiner tree of some sub-
Otherwise, it is cheaper to simply send the independegst of the vertices of a gragh is a minimum-weight con-
packets. nected subgraph @ that includes all of the vertices.
Energy efficiency obviously impacts the choice of an Let G(V, E) be the set of all nodes in the sensor net-
aggregation tree. Essentially, as the aggregation effigierwork with non-negative weights for each e E corre-
increases and the cost of the aggregation decreases, #piending to the cost to transmit data over liek Let



7 C V be the set of source nodes € S, whereS C 7) CALCULATE-TREE( )
and the sink k). The cost function is in terms of energy 1 G: Setof Nodes
consumed on each link for transmission of data across 2 ZC G: Source Nodes + Sink Node
that link. If the cost function for assigning the weights 3 Sc Z: Source Nodes
includes data aggregation (see Equation 1), finding the g 1'_N°des'n Tree
sul_onetworkT C @ such that every pair of. v.erticesf in 6 T’_g{;: Source and Sink nodes in Treb
Z is connected and the total cost ‘6fis a minimum is 7 T={}
equivalent to finding the minimum cost aggregation tree. 8 ze S:zis chosen randomly
However, this is the Weighted Steiner Tree. 9 xeZ:xisclosesttoz

The determination of a Weighted Steiner Tree is NP- 10  Connect(x,z)

complete [4]. Even if the edge weights are all equal (cor- 11 T=T+Xx+z+ path(x.2)
12 T=T+z+x

responding to a perfect aggregation algorithm), the prob- 13 while T/ £ 7

lem remains NP-complete. Therefore, it is infeasible to 14 do

calculate the optimal aggregation tree and heuristics for 15 xc Z:zisclosesttoz T
efficiently constructing aggregation trees are needed. 16 Connect(x,z)

17 T=T+ x + path(x,z)
18 T=T +x

C. Opportunistic Aggregation

Opportunistic aggregation only aggregates streams' [f- 1 ©ceanus Aggregation Tree Algorithm

they happen to intersect on their way to the soureqy,(

Directed Diffusion [8]). To achieve opportunistic aggreE. Oceanus

gation, each source begins sending streams to the receiveé . h ) i

via shortest path routes. As streams intersect, they are ag- ceanus approxmgtes the aggrggapon trge providing
gregated. the most energy-efficient communication using knowl-
. : dge of the energy efficiency of the aggregation algorithm.
Aggregation points are always downstream, towar% - . .

) . ceanus uses a heuristic-based algorithm that approxi-

the sink. The more dispersed the source nodes are from

each other in the network, the less likely aggregation Enﬁates a Weighted Steiner Tree, where the weights reflect

performed. Opportunistic algorithms tend to result in a ne energy efficiency of the aggregation algorithm. To

. ) . . gtart, Oceanus randomly chooses one of the source nodes.
gregation trees with aggregation points close to the S|r| ) . . :
Coo - then finds the node it¥ that is closest to the chosen
Such trees are beneficial if the energy efficiency of the ag- ) ) .
L . . ode using a shortest path algorithm where the weights
gregation is low, meaning that the savings from aggregat- . .
. . " = _.-on the paths are given by Equation 1. These nodes are
ing early does not outweigh the additional communication . : :
D S : connected by this path. Then, the next nod&ithat is
cost. However, opportunistic aggregation is less likely tq .
. . : .Closest to the tree that has been already formed is chosen
result in energy efficient aggregation trees for aggregatio : : .
) . . . and connected, and so on until a complete tree is obtained.
functions with high efficiency and low cost. . . .
The aggregation tree is calculated according to the algo-
rithm depicted in Figure 1.

Itis simple to see that this method results in each closest
sensor node being connected via a least cost path, where
The Greedy Incremental Aggregation algorithneost is defined in terms of Equation 1. Since this is only a

(e.g, [7]) begins by sending a single stream via a shortdsguristic, it is possible that this is not the Weighted Stein
path route to the sink. Each additional stream is theree. If two nodes can be connected via two different least
routed to a node participating in the first flow via a&ost paths, the intermediate node that is chosen may be
shortest path. This method prevents two streams frdarther away from all of the remaining unconnected nodes
spanning the entire network only one hop apart. than the other choice of intermediate node.

Aggregation trees derived from this sort of algorithm To find the aggregation tree, we assume that the sink
often have aggregation points that lie somewhere in thede has knowledge of the sensor network topology.
middle of the network. This can yield significant effi\When an event of interest happens, each sensor node
ciency gains over opportunistically created aggregati@ends an initial notification of event to the sink node. At
trees in cases where the aggregation algorithm has modbat time, the sink calculates the aggregation tree and in-

ate to high energy efficiency. forms the source nodes and the aggregation nodes of the

D. Greedy Incremental Aggregation



QOO OOOO0O0 is where an event occurs in the middle of the network (see
Figure 2, nodes A-E are sources). The final scenario is
©O000B®OOO0O0O0 where events occur at the edges of the network (see Fig-
ONOXOXOROXO OO0 ure 2, nodes U-Z are sources).
OQOO0O®OO0OO0OOLOLOOO In all scenarios, the sink is placed near the bottom edge
of the network. For the simulations, no mobility is used
©OOOO0O®OO0O0OV since we assume a static sensor network. Additionally, we
QOOO0O®OOOOOO do not consider node failure.
OCOO0OO0OOOOOOO0
O000000000 B. Experimental Results
Two groups of results are presented in this section. The
OOO0O0O0OOO0O0O0 first group evaluates the performance of Oceanus, the op-
OO0OO0OO0OO0O®WOOOO portunistic algorithm, the greedy incremental algorithm,

. . _ and sending the data via shortest path routes for a perfect
Fig. 2. Network Event Scenarios (Scenario 1: Nodes 1-5 arecss, . . .
Scenario 2: Nodes A-E are sources, Scenario 3: Nodes U-Z gggregation algorithm with no cost. The second group of
sources) results evaluates the performance of these methods across
aggregation algorithms with varying aggregation efficien-
Lﬁz_ies, but no aggregation cost. Varying the aggregation

lated for each independent event in the network, for ea RSt has the same effect. For all experiments presented

sink. This is an implementation detail however, and cou {Fre. we consider iny the energy expenditure of nodes
. . within the aggregation tree. This is reasonable because
be altered in future versions.

the focus of this paper is finding the minimum cost aggre-
gation trees in terms of energy. Developing algorithms for
IV. EVALUATION putting nodes to sleep that are not part of the aggregation

In this section, we analyze the three data aggregatiige is outside the scope of this work.
tree algorithms. The goal of this analysis is to determine 1) Perfect Aggregation:The results in this section use
the most energy-efficient aggregation tree given varyirgyPerfect aggregation function. There is no cost for ag-
levels of aggregation efficiency. gregation and the amount of data sent after aggregation is

We analyze the aggregation tree algorithms in terms @ bytes, the same as a unit of sensor data, no matter how
the amount of energy spent transmitting sensor data. Baany flows are being aggregated. Therefore, the optimal
cause the algorithms are implemented in the ns2 netw@t#gregation trees aggregate flows as close to the sources
simulator [14], a link energy model is required to provid&S possible. These experiments explore the most efficient
the energy analysis. We begin by presenting this modgnd of the aggregation spectrum. For each of the three

Next, the simulation set up is described. Finally, the peflgorithms tested, opportunistic, greedy incrementad, an
formance analysis is presented. Oceanus, the algorithms are run over 10 varying networks

conforming to the three basic configurations. The results
presented are the average results from these runs. The
graphs in this section are normalized to the energy ex-
Our simulations are performed with the ns2 networgenditure in mJ of sending each sensor’s data via a short-
simulator. The sensor network consists of a 100 node nest path link with no aggregation. This yields percentage
work laid out on a grid. Each node in the middle of theavings over the shortest path, no aggregation method for
grid has 8 one-hop neighbors. The sensor data size isé&th of the algorithms.
bytes and the packet header size is 6 bytes. Each nod€igure 3 depicts the energy savings for networks where
has a transmit power of 36mW and a receive power tiie sensors are clustered in a corner of the network. Be-
5.4mW. These values were chosen to model a commeawse the nodes are clustered, the opportunistic algorithm
sensor node [18]. The data transmission rate of the nodes a reasonable likelihood of causing two streams to flow
is 40Kbps. to the sink only one hop away from each other. However,
We consider three sensor scenarios. The first scenarithie greedy incremental algorithm is able to aggregate the
where an event occurs at the corner of the sensor netwélidiwws somewhat near to the sources. Oceanus, on the other
(see Figure 2, nodes 1-5 are sources). This is a comniand, links all of the nodes together in a chain , aggregat-
model for data aggregation studies. The second scenang at the sources, and transmits through the closest node

paths to follow. Currently, an aggregation tree is calc

A. Simulation Setup
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Fig. 3. Perfect Aggregation, Network 1 Fig. 5. Perfect Aggregation, Network 3

nodes in each sector of the network. Therefore, it is likely
that multiple independent streams will be sent through
the network without aggregation. The greedy incremen-
tal algorithm will likely send all data across the center
of the network, aggregating in the middle, depending on

which stream begins first. Oceanus routes data around

By e the edges of the network, in a large circle, from source

o node to source node, aggregating at the sources. Oceanus
uses 43% less energy than the baseline and about 10%
less energy than the greedy incremental algorithm. This
scenario is the worst case for the opportunistic algorithm.
As expected, the greedy incremental method and Oceanus
perform well, with Oceanus providing greater energy effi-
ciency by routing through all of the source nodes. There-
fore, for perfect aggregation functions, Oceanus outper-
forms all other aggregation methods.

to the sink with high probability. Oceanus uses 26% lessThe total energy consumed for varying lengths of data
the energy then the baseline and about 15% less thanfi®s from 1 sensor data packet from each sensor to 100
greedy incremental algorithm. packets from each sensor was also tested for perfect ag-

Figure 4 depicts the energy savings for networks wheggegation. The longer the flows go on, the cost of set-
the sensors are surrounding an event in the middle of tiveg up the aggregation tree is amortized over the length
network. In this scenario, it is likely that the nodes oof the flow. For each of the three algorithms tested, op-
the side of the event away from the sink will aggregaigortunistic, greedy incremental, and Oceanus, we ran the
with nodes closest to the sink rather early. For the greedjgorithms over 10 varying networks conforming to the
incremental algorithm, it is more likely that the nodes aghree basic configurations. This showed the trends in the
gregate close to the sources. Oceanus sends data araiind over a range of length of flows. Since the none of
the event in a ring, aggregating at each source, and thas aggregation trees can be set up before the first packets
connects the ring to the sink via one of the source nodege received, all of the algorithms have the same energy
Oceanus uses 40% less energy then the baseline and abersumption as the Shortest Path flows. However, as the
10% less energy than the greedy incremental algorithmflows progress, each of the algorithms’ energy consump-

Figure 5 depicts the energy savings for networks whetiens diverge. As expected, the results remained the same
the sensors are on different edges of the network. Tlas presented in Figures 3-5, with the gaps between the tree
scenario represents a difficult case. With high probabaigorithms increasing roughly linearly as the flow lengths
ity, the opportunistic algorithm can only aggregate thosecreased.

Network 2, Perfect Aggregation
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Fig. 4. Perfect Aggregation, Network 2
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2) Varying the Aggregation EfficiencyThe locations
of the optimal aggregation points depends on the ef Oosandy
ciency of the aggregation algorithm. Oceanus attainc =~
the most efficient communication for perfect aggregatic
functions by aggregating data close to the source nod
However, as the efficiency of the aggregation algorithi
decreases, the optimal aggregation points move closel
the sink node.

The graphs in this section present the amount of ener
to send 100 sensor packets from each sensor node to
sink using the three aggregation methods (opportunist
greedy incremental, and Oceanus) as well as shortest ‘ . . . . . . . .
routing. The x-axis of the graphs represent the amou "0 o1 ez 03 o4 o5 06 07 o8 o3 1
of data compression achieved by the aggregation fur.. almton ERERicy
tion. Zero repres_ents a perfect aggregation function apg_ 8. Energy Consumption vs. Aggregation Efficiency, N3
one represents simple concatenation.

Figure 6 depicts the energy consumed for varying ag-
gregation efficiencies in a network where the sources ategation efficiencies in a network where the sources are
in the corner of the network. The opportunistic algorithmgircled around an event in the middle of the network.
curve is rather linear, as expected. This is because thgain, the curve for the opportunistic method is roughly
data aggregation is performed only if shortest paths frolinear as expected and both the greedy incremental algo-
the source nodes cross. Therefore, it is affected leastifhm and Oceanus begin to suffer as the aggregation al-
changes in the aggregation efficiency. Both the greeggrithm becomes less efficient. This time however, the
incremental method and Oceanus begin to perform mateedy incremental algorithm begins to consume more
poorly as the aggregation efficiency decreases. This is legergy than the opportunistic algorithm for efficiencies
cause the benefit of aggregation shrinks below the posgiese to simple concatenation. This is because some paths
ble increase in hops a flow makes to reach an aggre@#e lengthened to reach aggregation points, but the gain
tion point. However, because the sources are collectédaggregation no longer outweighs these path increases.
in a corner of the network, no path is lengthened signifdceanus continues to be the most efficient algorithm in
cantly. Therefore, both the greedy incremental algoriththis case as well. This is because its gains in aggrega-
and Oceanus continue to outperform the opportunistic kgn follow along the shortest links to the source node and
a significant margin, with Oceanus always being the md$terefore still outweigh any increases in path length.
efficient. Figure 8 depicts the energy consumed for varying ag-

Figure 7 depicts the energy consumed for varying agregation efficiencies in a network where the sources are
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around the sides of the network. As the graph shows,oit taking care of failures in the network and consider-
is the worst case for Oceanus at poor aggregation effig adding load-balancing. We have not implemented
ciencies. Around 82% aggregation efficiency, the oppasny load balancing mechanism, or fault tolerance into
tunistic algorithm begins to outperform Oceanus. This Sceanus.

because, the Oceanus algorithm always tries to perform
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