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Abstract

Gossip protocols provide probabilistic reliability and
scalability, but their inherent randomness may lead to high
variation in number of messages that are received at dif-
ferent nodes. This paper presents techniques that leverage
simple social network principles enabling nodes to select
gossip targets intelligently. The simple heuristics presented
in the paper achieve a more uniform message overhead at
each node, lowering the system-wide gossip traffic, while
simultaneously reducing the latency of gossip spread (by
up to 25%). We experimentally compare our system, called
JetStream, against canonical gossip as well as gossip on
the Chord overlay. Intuitively, JetStream seeks to make gos-
sip spread more deterministic and predictable, while still
inheriting its scale and reliability. JetStream also provides
an added benefit by reducing network bandwidth utilization
with a low sustained rate of gossip injection.

1. Introduction

The advent of Web feeds such as RSS and ATOM, as
well as streaming Web content, has made large-group mul-
ticast an important problem. Several systems have been
designed for large-scale multicast including FeedTree [17],
BitTorrent [7], Bullet [12], etc. However, we believe that
gossiping offers the right combinations of probabilistic scal-
ability and reliability to solve these new problems.

One of the primary obstacles limiting the use of gossip in
these new settings is its inherent randomness. The random
selection of gossip targets at different nodes leads to high
variation in incoming message overhead – some nodes may
receive 30 copies of the same gossip message while others
receive a small number (which is more desirable). We need
an intelligent strategy for gossip target selection to reduce
the random overhead in a predictable manner. At the same
time, we would like the scalability and reliability of the ran-
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dom gossip protocol to be inherited.
This paper presentsJetStream, a gossip protocol that

usessocial network principlesto achieve intelligent gossip
target selection. We wish to clarify to the reader that this pa-
perdoes not leveragesocial network links (e.g., from social
network systems like Orkut [1] etc.) to improve epidemics.
Instead, we borrow purely algorithmic ideas from social
networks research to develop JetStream. Surprisingly, the
combination of simple social network heuristics and gossip
leads to a more uniform message overhead, reduced latency
of gossip spread, and lower system-wide traffic.

The two social network principles used in JetStream are
reciprocity andstructural holes. Both are (unconsciously)
used by humans while developing their social relationships.
Reciprocity theory states that individuals tend to return the
affection of others. Structural holes theory states that indi-
viduals tend to establish relationships that maximize their
“connectivity”.

We experimentally compare JetStream’s performance to
that of canonical random gossip, as well as to gossip spread
over the Chord overlay. Our experiments show that Jet-
Stream lowers message overhead at nodes by half, reduces
gossip latency by up to 25%, and lowers the overall gossip
traffic by half. We wish to point out that this paperdoes not
present algorithms for topologically-aware gossip, adaptive
gossip, or semantic gossip. Although social network rules
can be added on to these mechanisms, they are beyond the
scope of this paper.

The rest of the paper is organized as follows: we discuss
the basic properties of gossip protocols in Section 2. In Sec-
tion 3, we introduce mathematical heuristics for the theories
of reciprocity and structural holes. Section 4 discusses our
algorithm and implementation. We provide simulation re-
sults in Section 5. And finally, Section 6 concludes.

Related Work: Besides the bulk of work on scalable and
reliable multicast (e.g., SRM [9]), several publish-subscribe
systems have been developed recently for RSS feeds (e.g.,
FeedTree [17]), and other content, e.g., Bullet [12]. Sev-
eral “flat” (canonical) gossiping protocols have been pro-
posed in literature, including Bimodal Multicast [4], work



by Kermarrec et al [11], work by Kouznetsov et al [13],
to name a few. Variants of these gossip protocols that are
topologically-aware (e.g., [10]) or semantically-aware (e.g.,
[16]) have also been proposed. Gossip has been used to
design several distributed protocols such as membership
mechanisms, e.g., [8] and [19].

Some work has been done on combining social network
principles with peer to peer systems. However, none of the
work in this area has explicitly drawn mathematical ideas
from social networks. Bernstein et al [2] present a policy
for selecting peers that lead to better utilization of global
resources. Marti et al [14] present a DHT (distributed hash
table) that utilizes the friend-of-friend social principle to
improve trust among peers.

Monge and Contractor [15] and Wasserman et al [20] are
the two primary resources that describe various social net-
work principles and theories using mathematical heuristics.

2. Gossip Networks

In this Section, we describe the flat gossip protocol, and
characterize it through simulated experiments. Our network
model is composed ofn nodes (labeledv0 throughvn−1).
Each nodevi may communicate with (i.e., send a message
to) any other nodevj . The cost incurred to send a message
between any two nodes is constant.

2.1. Flat Gossip

A simple gossip protocol may be used to propagate mes-
sages (for example, updates in a publish-subscribe system)
within a network. The simplest gossip protocol (namedflat
gossip) is as follows: starting with the message originator,
each node choosesc randomforwarding targets(uniformly
from the networkmembership list) during each time inter-
val, to send a messagem. The nodes repeat this process for
d time intervals after initially receiving a message.1 A rel-
atively inexpensive optimization is for nodevi to not select
nodevj as a forwarding target if nodevj is known to have
already received messagem (i.e., if nodevj has previously
forwarded the messagem to nodevi).

Previous research [11] has shown that a gossip protocol
with c · d = O(log n) allows a message to be spread to all
nodes with very high probability. To be precise, if each node
forwards the message tolog n+ k nodes, then the probabil-
ity that all nodes get the message converges toe−e−k

.

2.2. Overlay Networks

Network protocols generally have a non-zero cost for es-
tablishing an initial connection between two nodesvi and
vj . Hence, it is beneficial for nodes to select the same target

1 In this paper, we use a constant value ofc = 1, since havingc > 1 is
akin to reducing the time interval duration by1/c.

candidates for different gossip messages. Doing so amor-
tizes the connection establishment cost over many mes-
sages. Stated differently, a node and itstarget setremain
connected. The sum of these connections forms anoverlay
network.

Properties of Random Overlay Networks: An over-
lay where each node has a target set of sizel = O(log n)
(selected randomly from all othern − 1 nodes) has an in-
teresting property: as shown in Figure 1(a), in a network
of sizen = 1, 000, the distribution of nodeindegree(i.e.,
the number of nodes that have selected a certain node as a
forwarding target) follows a binomial distribution.
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(a) The indegree distribution of a random overlay (with
constant outdegreel) follows a binomial distribution.
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(b) There is a tight linear correlation between the number
of messages received by a node and its indegree. The data
points are plotted up to±(0.25, 0.25) for clarity.

Figure 1. Random overlays have an uneven
indegree distribution, resulting in unfair gos-
sip workloads.

The variance in the node indegree results in uneven
workloads during gossip propagation. A simulated exper-
iment demonstrates the uneven workload property of gossip
protocols. Figure 1(b) displays a tight linear correlation be-
tween a node’s indegree and the total number of messages
received, in a network of sizen = 1, 000 and the target set
size ofl = 16. Hence, improving the fairness of indegree
distribution may reduce workload variance.

To improve the workload distribution and dissemination
speed, we use social network principles. The basics are dis-
cussed in the next Section.



3. Social Networks

A multitude of social network theories attempt to explain
the logic behind relationships. In this Section, we focus
on two theories that intuitively improve the performance of
gossip protocols by specifying a criteria for target selection.

3.1. Reciprocity

Social exchange theory explains dyadic interactions on
the basis of resources each actor has to offer. Reciprocity
theory [5] states that there is a higher tendency for mutual
interactions between members of a social network. Intu-
itively, reciprocity improves indegree distribution and re-
duces the total number of messages propagated by flat gos-
sip. If each node has a reciprocal relationship with its for-
warding targets, each node’s indegree will be exactly equal
to its outdegree,l. Furthermore, during gossip, a node need
not forward the message back to any node from whom it
already has received the message. In essence, this should
reduce the number of messages in half. The utility value of
nodevi (based on reciprocity) can be calculated as follows:

UtilityReciprocity(vi) =
n−1∑
j=0

xijxji (1)

The variablexij is a boolean value representing the cur-
rent relationship between nodesvi andvj (i.e., if vj is a tar-
get ofvi). A node’s utility value improves (only) for each
reciprocated relationship. To improve reciprocity, our goal
is to maximize this utility value for all nodes.

3.2. Structural Holes

An intriguing social theory based on self-interest is the
structural holes theory [6]. The structural holes theory rec-
ognizes that there are entrepreneurial actors who actively
position themselves in an advantageous positions within a
social network.

A structural hole is the position in a network that pro-
vides a direct advantage to a network member. An actor
in a structural hole connects two disconnected actors. In a
competitive world, an individual that fills such a hole draws
an advantage from their positioning, both by collecting a
higher volume and better quality of information from their
contacts, as well as by exercising greater control over them.
The utility value (as prescribed by the structural holes the-
ory) of nodevi can be calculated as follows:

UtilityStr.Holes(vi) =
n−1∑
j=0

xij

n−1∑
k=0

xik(1− xjk) (2)

A node’s utility value improves only when it forms
relationships with nodes that do not have a relationship
with each other. Nodes changing forwarding targets based

on structural holes theory may improve the dissemination
speed of gossip messages.

4. The JetStream Approach

The JetStream algorithm seeks to improve a node’s util-
ity. Each node alters its target set strictly based on the local
evaluation of the utility function – without considering the
effect of the decision on the overall health of the system
(i.e., global utility). Our experiments find that this greedy
behavior leads the system to converge near the globally op-
timal configuration.

Utility Function: Our intuition is that the combina-
tion of the two aforementioned theories (reciprocity [5] and
structural holes [6]) should improve the performance of gos-
sip networks. We derive a net utility function for a nodevi

by combining the utility functions for reciprocity and struc-
tural holes, as follows:

Utility(vi) =
n−1∑
j=0

xijxji

n−1∑
k=0

xikxki(1− xjk)(1− xkj)

(3)
Given l as the number of gossip targets, the maximum

attainable utility value isl·(l−1)
2 (discounting repetition).

Nodes that attain the maximum utility are calledoptimal
nodes, whereas, others are labeled assuboptimal nodes.

A utility function can shape the overlay without impos-
ing hard constraints and/or deterministic rule sets on target
selection. For example, a deterministic rule for structural
holes allows a nodevi to select another nodevj as a target
if and only if vj is not a target for any ofvi’s other targets.
While a deterministic rule such as this may allow nodes to
construct their target set iteratively – a newly joined node
may not be able to construct its target set quickly. Using a
utility function, a new node may simply pick its initial tar-
get set at random, and then gradually alter its target set. We
describe the process by which nodes improve their target set
using utilitarian calculations next.

Generic Algorithm Details: At any given time, each
node maintains a membership list (consisting of nodes
known to exist in the network), in addition to its gossip tar-
get set. Our approach is to have each node continuously
attempt to alter its gossip target in order to increase its lo-
cal utility value. This is achieved by having each nodevi

execute areplacement procedureonce everyupdate period.
During the replacement procedure, the nodevi (which, for
convenience, we shall call thedeciding node) tentatively
changes at most one of its gossip targets, seeking to improve
its local utility value.

Initially, the deciding node calculates its current utility
value. This value is marked as thecurrently highest utility.
Next, the deciding node selects one of its targets (at random)
as a potential eviction victim – thedelink candidate. The



node then creates an emptyreplacement candidates list, and
adds the delink candidate to this list.

Next, the deciding node iterates through each elementvj

in its membership list that is not a gossip target, and calcu-
lates its utility value by replacing the delink candidate with
the nodevj in its target set. Three cases may arise: (1) If
the new utility is lower than the currently highest utility,vj

is removed from consideration. (2) If the utility is higher,
the replacement candidates list is set to the singleton{vj},
and the value of the currently highest utility is updated. (3)
If the utility is the same, thenvj is added to the replacement
candidates list.

After the entire membership list has been looked at, a
random node from the replacement candidates list is cho-
sen as a replacement for the delink candidate. In essence,
the above mechanism implements an evolvingutilitarian
overlay. Next, in Section 4.1, we analyze experimental re-
sults from theglobal implementation of JetStream. In Sec-
tion 4.2, we integrate a membership list protocol in thelocal
implementation of JetStream.

4.1. Global Implementation

To study the basic emergent properties of the described
algorithm, we implement a system with the following as-
sumptions:
• The network is non-dynamic, i.e., participating nodes do

not leave, rejoin, or crash.
• Each node knows the presence of all other nodes, i.e., the

membership list is complete and consistent.
• Each node knows the current target set of all other nodes.

Stated differently, when a node updates its target set, the
update is propagated to all other nodes in the network
instantaneously.
The simple implementation has the following important

parameters: the update period is 1, i.e., the replacement
procedure is executed every time interval. It should be
noted that while the implementation is simple, the compu-
tation complexity of a single node’s replacement procedure
is O(n · l2). Furthermore, each node maintains a memory
overhead ofO(n · l), to keep track of all other target sets.

(a) t = 0 (b) t = 10 (c) t = 90

Figure 2. Evolution of a JetStream overlay.

Results: Figure 2 charts the progression of a random
overlay (with n = 16 and l = 3) to an utilitarian over-

lay with time. The individual nodes select targets that yield
higher utility, ultimately resulting in a graph with exactly
n·l
2 bi-directional edges. Initially, the nodes improve their

utility value rapidly, soon reaching a point of diminishing
returns (Figure 3(a) shows the phenomenon in a network
with n = 100 andl = 5). However, the algorithm contin-
uously forces nodes to select targets that yield better util-
ity until the network stabilizes, and no more changes to the
overlay are required. Here, the network converges when
each node reaches its maximum utility value.
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(a) With JetStream, nodes in a random overlay converge
towards the optimal utility, by selecting better targets.
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(b) The converged utilitarian overlay has the same outde-
gree as the indegree (for each node). The standard devia-
tion of the indegree reduces to zero.

Figure 3. The overlay converges to a set of
optimal targets over time.

Reciprocity enforces a degree equality on the utilitarian
overlay: each node attains the same indegree value (recall
that an initial random network overlay has a fixed constant
outdegreel – however, the indegree follows a binomial dis-
tribution). Figure 3(b) shows the progression of the standard
deviation of node indegree distribution for the overlay. Ulti-
mately, the standard deviation reduces to zero, implying no
variation in distribution of node indegree. At this point the
network no longer exhibits any tendency to change. How-
ever, this characteristic is only exhibited whenn · l is even.
The network does not stabilize ifn · l is odd because of
the last remaining “dangling” (i.e., non-reciprocating) tar-
get pointer. An easy way to solve this issue is to always use
an even value forl.



4.2. Localized Implementation

The global implementation requires perfect knowledge
of the network state. Moreover, each node takesO(n · l2)
time per replacement round to find a better candidate for its
target set. Furthermore, it requiresO(n · l) memory storage
at each node. Clearly, this type of computational overhead
is not suitable for large scale networks. Hence, we imple-
ment a version that requires only partial knowledge of the
network state, meanwhile, lowering the computation (and
memory) overhead. For the localized implementation, we
make much more realistic assumptions about the network.
Specifically:
• Each node can communicate with all other nodes, using a

reliable underlying messaging mechanism. All messages
are delivered within a constant time delay. We model a
time delaytdelay of 1 time interval.

• A node does not know the consistent state of the network,
it must actively probe the network to gather updated in-
formation.
We introduce many restrictions in the realistic imple-

mentation: the biggest restriction begins with the introduc-
tion of thecandidate set, whose maximum size is set tos
(wheres > l). A node is only required to maintain extended
information (i.e., target sets) of the nodes in the candidate
set (unlike the global implementation, which kept track of
the target set for the entire membership list). An important
note is that the candidate set is a superset of a node’s tar-
get set. This is an obvious requirement because a node can
only calculate its utility value correctly if it has access to
the target sets of each of its targets. However, limiting the
candidate set tos entries reduces the memory overhead per
node toO(s · l). For the most compact implementation2,
each node can be represented in 6 bytes by its IP address
and port. For a network withn = 5, 000 and l = 10, a
candidate set of sizes = 20 requires as little as 1,200 bytes
of memory overhead to maintain this information.

To keep reciprocating nodes updated, a node notifies all
affected nodes after a change in its target set (i.e., updates
are propagated to the new target set as well as the delinked
node). This mechanism ensures that nodes remain up-to-
date with changes that affect their utility value. The update
period is also varied on a per-node basis to stagger the exe-
cution of the replacement procedure. This is required so that
nodes do not continually update their target set with stale in-
formation (i.e., due to the delay incurred in receiving update
messages). For example, with a staggered update period of
tstagger = 5 time periods, a node picks its next update time
randomly between(trtt, tstagger]. The trtt is the network
round trip time (i.e.,trtt = 2 · tdelay). Waiting for a mini-

2We are referring to a simple matrix here. While it would simplify
space requirements, it would increase computational requirements. More
complicated data structures can be used to improve speed.

mum of trtt time periods before the next update period al-
lows a node to gather the acknowledgment reply from the
newly added node (the reply also contains the latest target
set of the newly added node).

Finally, nodes in the candidate set need to be replaced on
a regular basis. This allows the network to reach optimal
utility, be resilient to crash-stop failures, handle churn, etc.
A node in the candidate set is replaced if it sends no mes-
sage fortout consecutive time intervals. To prevent being
timed out, a node send an update message to all its target
set everytout time intervals. If a node is timed out from
the candidate set, a random node is chosen from the node’s
membership list to replace it.

A node maintains a membership list consisting of all
previously discovered nodes (gathered through update mes-
sages). In our implementation, a node’s membership list is
O(n), however, it can be bounded for large-scale networks.
Maintaining a consistent membership list is not required in
JetStream.

4.3. Analysis

In this Section, we analyze the overhead required to
maintain a JetStream overlay in a static network. Based
on this, we provide a gossip injection rate threshold beyond
which JetStream utilizes less network bandwidth than a ran-
dom overlay. Please refer to Table 1 for a review of the no-
tations used to describe the network (and its characteristics).

Table 1. Notations describing the network.
Notation Meaning
n Number of active nodes in the network
noptimal Number of optimal nodes
nsubopt Number of suboptimal nodes
l Size of the target set
s Size of the candidate set
tstagger The maximum stagger time between update periods
trtt Network round trip time
tupdate The expected time between update periods
tout Refresh interval to keep a target entry from timing out
p Probability of a suboptimal node finding a better target
B The background traffic overhead (number of packets)
I The gossip injection rate
wB The size of each target set information packet
wI The size of each gossip message

Theorem 1: For a sustained gossip injection rate of
I ≥ Ithresh = 2B·wB

n·l·wI
, a maximum utility JetStream over-

lay uses fewer messages than random gossiping (whereB
is the background traffic overhead of the JetStream overlay,
wB is the average packet size of a target set information
packet, andwI is the size of each gossip message).

Proof. Recall that an optimal node is one that has achieved
the highest local utility value, whereas a suboptimal node
is still seeking to achieve the highest utility. As the update
period is staggered using randomness, its value is expected



to betupdate = trtt+(tstagger−1)
2 . Recall that a suboptimal

node sends update packets to its new target set as well as
the delinked node on each change in its target set. Given
p as the probability of a suboptimal node finding a replace-
ment target, the traffic generated by all suboptimal nodes
is approximatelynsubopt · p · (l + 1) packets everytupdate

time periods. To preserve the reciprocal link, every optimal
node sends a refresh packet to its target set. This results in
noptimal · l packets everytout time periods. As another con-
sequence of the timeout mechanism, a nodes removes old
elements (exclusive of its current target set) from its candi-
date set aftertout time periods. This results in an additional
2n · (s− l) packets being sent everytout time periods (each
timeout replacement generates two network calls: one for
the deciding node to inquire the new candidate set node re-
garding its target set, and the other for the newly selected
candidate set node to respond with its target set). Hence,
the total traffic incurred due to the timeout mechanism is
2n·(s−l)+noptimal·l

tout
packets each time interval. Therefore,

the theoretical traffic due to the JetStream protocol is:

B =
nsubopt · p · (l + 1)

tupdate
+

2n · (s− l) + noptimal · l)
tout

(4)
A gossip message over a random overlay is forwarded

approximatelyn · l times. In contrast, as discussed in Sec-
tion 3.1, a gossip message over a JetStream overlay is for-
warded only half as many times. Hence, JetStream can pro-
vide a benefit over random overlay whenI ≥ Ithresh:

I · wI · n · l ≥ I · wI ·
n · l
2

+ B · wB

Ithresh =
2B · wB

n · l · wI

5. Results

We present the results of JetStream’s localized imple-
mentation through synchronous simulation. The simula-
tions were run withn = 5, 000 andl = 10. The simulations
were run for either 3,600 or 7,200 time intervals.

5.1. Overlay Characteristics

We study the effect of the various parameters on the pro-
gression of the overlay in a static network. The findings are
summarized below:
• The localized implementation works almost as well as

the global implementation: the network stabilizes with
an average utility close to the maximal utility (see Fig-
ure 4(a)).

• A small candidate sets is sufficient. For example with
s = O(log n) = 2l, approximately 90% of nodes become
optimal quickly (see Figure 4(a)). Increasings provides

limited benefits, at the expense of added computational
overhead.

• The value oftstagger should be as low as possible. A low
value allows suboptimal nodes to choose better targets.
Our implementation defaultststagger to 5 time periods.
Figure 4(b) shows that a suboptimal node locates a better
target almost every update period using only a candidate
set of sizes = 2l. Specifically, the network stabilizes
with p ≥ 0.5. A value ofp ≥ 0.5 signifies that a deciding
node locates at least one suitable replacement node with
the same (or higher) utility.

• The value oftout affects the background traffic. Using a
tout value of 120 time periods, Figure 4(c) shows that the
JetStream overlay stabilizes with an average node send-
ing one packet approximately every 3 time periods.
On Joins and Leaves: While a realistic implementa-

tion with a static network preserves the emergent behavior
present in the global implementation, experiments involv-
ing a large number of sudden joins and crash-stop failures
(i.e, leaves) may help uncover other interesting properties.
We perform two experiments in a network with initial size
of n = 5, 000: one where 50% of the active nodes leave the
network, and another one where an additional 50% nodes
join the network. Both the events happen in two separate
experiments, at the halfway point of the run.
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Figure 5. JetStream is resilient to a massive
number of sudden leaves.

Figure 5 shows the network’s quick reconvergence to the
near-optimal average utility value after the crash-stop fail-
ures. Similarly, joining nodes integrate just as comfortably
in the network (not shown here), by providing a greater
choice in target selection.

5.2. JetStream with Flat Gossip

For the next experiment, we propagate a message with
flat gossip using three different target selection policies: a
random overlay, a Chord overlay, and the JetStream overlay.
In the Chord [18] overlay, each node hasm finger pointers
(in am-bit key space) as described in the original DHT pa-
per. For the experiment, the nodes are labeled with 13-bit
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Figure 4. Evolution of JetStream overlay for network size n = 5, 000 and target set size l = 10.

keys (as212 ≤ 5000 ≤ 213), with each node having 13 fin-
ger pointers. We select10 of these13 pointers randomly as
our forwarding targets. The JetStream overlay is simply the
random overlay evolved over 3600 time intervals.

The total message overhead imposed by JetStream is
lower, and far less varied (see Figure 6(a)) than either the
random overlay or Chord. The maximum overhead for a
JetStream node was 16 messages, compared to 33 for a node
in the random overlay, and 57 for a node in the Chord over-
lay. Stated differently, JetStream imposes a “fairer” work-
load to the network participants. Next, we run the same
simulation (using different underlying overlays) 10 differ-
ent times. In Figure 6(b), the total number of messages sent
by the flat gossip protocol is between 40% and 50% fewer
with the JetStream overlay than the Chord or random over-
lay. Furthermore, Figure 6(c) shows that gossip propagates
approximately 25% faster with JetStream (as measured by
the time taken for the message to reach the last node). Jet-
Stream was able to deliver the message to all 5,000 nodes
in all 10 simulation runs, Chord and random overlay failed
to deliver the message to one node during one run each.

5.3. Continuous Gossip

In the next experiment, we evaluate the performance of
a static JetStream overlay under continuous gossip injec-
tions. In Section 4.3, we showed that whenI ≥ Ithresh, the
bandwidth used by JetStream is lower than the bandwidth
used by a random overlay. AssumingwI = wB (i.e., the
packet sizes are ignored), we perform the next experimen-
tal comparison between the bandwidth utilized by a random
overlay and a JetStream overlay. Based on our implementa-
tion parameters,Ithresh = 0.076 based on Theorem 1 (i.e.,
a new gossip every 13 time periods for the entire network,
or a new gossip every 65,000 time periods per node). Our
experiment shows that the random overlay actually con-
sumes approximately 4% less bandwidth than JetStream at
the calculatedIthresh: roughly 3800 packets/second (ran-
dom overlay) vs. 3650 packets/second (JetStream). This
is due to the fact that the localized implementation of the

overlay does not attained maximum utility after 3,600 time
periods (as assumed by our analysis). However, using only
a slightly more aggressive injection rate (i.e, a new gossip
packet every 10 time intervals), a reduction in bandwidth
utilization is realized by JetStream. This experiment shows
that JetStream can provide a substantial reduction in band-
width utilization when the network expects a gossip injec-
tion rate higher thanIthresh.
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Figure 7. A continuous injection of gossip
messages in a dynamic network.

Churn: To evaluate the effect of churn on JetStream, we
used the Overnet traces [3] collected from a deployed P2P
network. The traces contained availability information of
2400 hosts for 7 days, at a granularity of every 20 minutes
(we scaled 1 second = 1 time period for this simulation).
Our experiments utilize 2 hours of the traces. While the
traces monitored 2400 hosts, the actual number of active
hosts fluctuated between 450 and 500 at any given time. A
node joins or leaves the network during a random interval
spanning the 20 minutes in which the data was collected. A
new node is introduced to the system using a bootstrap node
provides the joining node with a list of nodes to form an ini-
tial candidate set. The joining node then participates in the
network as any other node. A departing node is mimicked
by a crash-stop failure (i.e., no notification).

Next, we inject a continuous stream of gossip messages
into a JetStream, maintainingI = 0.2. A node was chosen
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spreading a gossip message compared to a ran-
dom overlay.

Figure 6. The gossip workload is more uniform, and the message propagation faster.

at random to be the originator of each new gossip message.
The targets for the gossip were chosen based on the current
target list of the JetStream overlay (i.e., the targets possibly
changed with time). Figure 7 shows the coverage of a gossip
message is close to 100% of active nodes in the system. In
fact, some gossip messages were received by more nodes
than present during gossip origin time (because new nodes
entered the system during the gossip spread).

6. Conclusion

Gossip protocols provide probabilistic reliability and
scalability. However, in Section 2, we showed that their in-
herent randomness leads to high variation in the number of
messages received at different nodes. Next, in Section 3 and
Section 4, we presented techniques that leverage simple so-
cial network principles to select gossip targets intelligently.
In Section 5, we showed that these simple heuristics achieve
a more uniform message overhead at each node, while low-
ering the system-wide traffic by up to 50%. We experimen-
tally compared JetStream against canonical gossip, as well
as gossip on the Chord overlay. Our results demonstrate
that JetStream helps gossip spread in a more determinis-
tic and predictable manner with reduced latencies of up to
25%, while still inheriting scale and reliability. Lastly, we
showed that JetStream also utilizes less bandwidth than a
random overlay if the continuous gossip injection rate ex-
ceeds a low threshold (Ithresh = 0.076 for a network of
sizen = 5000).
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