MÉLANGE: MULTI-TENANT SCHEDULING WITH ADAPTIVE EVICTION FOR GRAPH PROCESSING CLUSTERS

BY

JAYASI MEHAR

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Indranil Gupta
ABSTRACT

Multi-tenancy is an important approach to resource consolidation in cluster management. In this thesis we design and evaluate Mélange, an efficient multi-tenant scheduler targeted towards graph processing jobs. Mélange supports job priorities and eviction, while attempting to avoid starvation. We propose novel ways of exploiting domain-specific knowledge to achieve better scheduling decisions for graph processing jobs. We evaluate static eviction policies and design Mélange to adapt to the cluster and job state at run time to reduce overhead costs during eviction. We have developed Mélange as a cross-layer scheduler built over Apache Giraph and YARN, and show experimental results with synthetic as well as production workloads.
To my parents, for their love and support.
ACKNOWLEDGMENTS

This project has been done under the guidance of Professor Indranil Gupta. I want to thank him for all the valuable feedback and academic advice throughout the course of my degree.

I would also like to thank Mayank Bhatt without whom this work would not have been possible. I also want to thank Faria Kalim, who has been a big pillar of support as a friend as well as a colleague throughout my time at UIUC.

Finally, I deeply thank my family for always motivating me to see my goals come through.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1
 1.1 Contributions of this Thesis 2

CHAPTER 2 BACKGROUND .. 4
 2.1 Distributed Graph Processing Frameworks 4
 2.2 Multi-Tenancy in Cloud Systems 6
 2.3 YARN ... 7

CHAPTER 3 RELATED WORK ... 9
 3.1 Cluster Scheduling .. 9
 3.2 Multi-tenant Resource Management and Scheduling 9
 3.3 Graph Processing Systems Scheduling 10

CHAPTER 4 SYSTEM DESIGN .. 11
 4.1 Design Dimensions ... 11
 4.2 Architecture ... 12

CHAPTER 5 SCHEDULING POLICIES 15
 5.1 Notation .. 15
 5.2 Priority Scheduling ... 15
 5.3 Best Fit ... 16
 5.4 Preemptive Shortest Job First 18

CHAPTER 6 PROGRESS COMPUTATION 20
 6.1 Active Vertex Count Percentage 20
 6.2 Supersteps ... 20
 6.3 Speed of algorithm run ... 20
 6.4 Measuring metrics ... 21

CHAPTER 7 EVICTION POLICIES .. 22
 7.1 Eviction Policy ... 22
 7.2 Eviction Mechanism .. 23
 7.3 Microbenchmarks .. 24

CHAPTER 8 EVALUATION .. 28
 8.1 Experimental Setup .. 28
 8.2 Waiting Time ... 28
 8.3 Cluster Utilization .. 34

CHAPTER 9 CONCLUSION .. 35
CHAPTER 10 FUTURE WORK .. 36
10.1 Adaptive Scheduling Engine 36
10.2 Edge Migration .. 36
10.3 Lightweight Checkpointing 36
10.4 Prescheduling .. 37

REFERENCES ... 38
CHAPTER 1: INTRODUCTION

We are living in a digital age where massive amounts of valuable data is being continuously generated due to the rapid growth of the internet, social media and the spread of IoT devices. Processing this data is a key aspect in many machine learning and data mining applications that provide better user experiences, policy decisions and aid in preventing calamities.

A lot of this data is represented in graphical forms—a basic data structure where entities have connections between them. These connections can represent anything, for example, in the Facebook social graph [1] the entities are users and an edge between them represents friendship. Similarly, search engines [2], biological networks [3] and road network data [4] are a part of graphical datasets which commonly consist of trillions of edges. Distributed graph processing hence became a necessity to analyze graphs of such sizes. Google’s Pregel [5] was one of the first distributed computation paradigms for processing large graphs. Building on this paradigm, frameworks such as Giraph [6], GraphLab, PowerGraph [7], LFGraph [8], GraphX [9], have emerged in the field of distributed graph processing. Similar to how the MapReduce programming model [10] allowed easily parallelizable programs, such frameworks embody simplicity of development, by allowing users to write programs in an iterative manner.

As these systems have matured, there has been some interest in developing multi-tenant schedulers that can support graph processing jobs [11]. With multi-tenancy, jobs with different demands can share a variety of computing resources within a single cluster. For example, jobs with different priorities can be run on the same cluster. Multi-tenancy offers various benefits, including consolidation of resources, where different jobs can load the same input datasets from a common distributed file system. With graphs containing trillions of vertices, replicating the datasets across different clusters could add a lot of memory overhead. With multi-tenancy there is also a higher resource utilization which leads to lower capital expenses (Capex), improved return on investment (ROI), and a smaller total cost of ownership (TCO). However, multi-tenancy also brings a set of scheduling challenges alongside it. In a cluster which is running jobs of different priorities, it is critical to produce timely results since it can directly affect the revenue [12].

We propose using domain knowledge of the jobs to help scheduling decisions. Prior work has shown the benefits of leveraging application level progress to prefetch data on machines where job tasks are about to complete [11]. Similarly, we posit that leveraging application specific information in graph processing could help improve the quality of scheduling decisions.
in the cluster. To the best of our knowledge Mélange is the first preemptive scheduler that can work in a multi-tenant environment for graph processing jobs.

1.1 CONTRIBUTIONS OF THIS THESIS

This thesis describes our experiences in building Mélange, a multi-tenant preemptive scheduler designed to incorporate graph processing jobs. The following are the goals of our work, along with brief explanations of how our contributions help achieve them:

1.1.1 Goals

1. To run a consolidated cluster of graph processing jobs that can support different priorities and deadlines.

 It is common for system administrators to run consolidated clusters just for graph processing jobs so that existing data-sets on the shared storage can be reused. These jobs can have different priorities which would be taken into account by the scheduler.

2. To achieve low waiting time for high priority jobs.

 Higher priority jobs should be scheduled as soon as possible and can come at the cost of evicting lower priority jobs.

3. Minimize overhead and slowdown by keeping context switch time minimized.

 Evicting low priority jobs would involve some overhead, and we want to come up with a mechanism that can minimize this cost.

4. Avoid starvation of low priority jobs.

 While we want high priority jobs to be scheduled as soon as possible, we want to ensure that low priority jobs are not completely starved.

5. Achieve high cluster utilization.

 Scheduling policies that account for different priorities should also account for cluster resources and ensure minimum idle containers.
1.1.2 Contributions

1. We design different scheduling policies that support priorities and multi-tenancy.

2. We use characteristics specific to graph processing jobs to devise an efficient eviction engine that can choose the way preemptions are handled to reduce duplicate work.

3. We extend Apache Giraph and YARN to develop a cross-layer preemptive scheduler that can accept graph processing jobs of varying priorities.

4. We provide API hooks to allow custom policies for scheduling and eviction decisions.

5. We evaluate production and synthetic traces to conclude how our scheduling and eviction policy compares with the default policies.

The rest of this thesis is organized as follows: In Chapter 2 we discuss the background of distributed graph processing frameworks, multi-tenancy systems and cluster scheduling. In Chapter 3 we discuss related work. Chapter 4 discusses the architecture for Mélange and the design decisions behind the same. Chapter 5 discusses our Scheduling Engine and the policies that we implemented, Chapter 6 talks about how we measure job progress and 7 discusses our adaptive Eviction Engine. Chapter 8 is an overview of our experiments and we discuss our conclusions in Chapter 9. Chapter 10 of this thesis talks about the scope for future work.
CHAPTER 2: BACKGROUND

In this chapter, we discuss the background in current graph processing systems, multi-tenancy in cloud systems and some existing work in cluster scheduling.

2.1 DISTRIBUTED GRAPH PROCESSING FRAMEWORKS

The first distributed graph processing paradigm was introduced by Google [5] in the Pregel system. Pregel follows a Bulk Synchronous Processing model [13] of graph computation. Each vertex is assigned to a node, and each process computes new values for each vertex that it owns. This entire process is carried out in a series of synchronized ‘super steps’, where there is a barrier between the different super steps in the processing. Within each superstep the vertices compute in parallel, each executing the same user-defined function that expresses the logic of a given algorithm. Thus, every process must finish its computations for an iteration before the algorithm can proceed with the next iteration.

Algorithms written in such a paradigm can end in two ways - either by specifying a fixed number of supersteps, or by waiting for all vertices to halt. When an algorithm starts, all vertices are in the active state and participate in the computation that is required in a superstep. A vertex deactivates itself by voting to halt, which implies that the vertex does not participate in the computation of a superstep anymore. The framework will not execute the vertex in the next supersteps unless that vertex receives a message from a neighbour vertex. To deactivate itself again, the vertex must vote to halt again. The algorithm will be terminate at a time when all the vertices are inactive and there are no more messages in transit.

Figure 2.1 provides an illustration of the Shortest Paths algorithm implemented in the Pregel paradigm. Here, every vertex is attempting to find its distance from a single source vertex (initialized with a distance of 0). Every superstep, a vertex receives messages from the previous iteration, updates its own distance from the source if needed, and then broadcasts its new value to its neighbours. This process repeats until all vertices converge to their final values, and hence all vote to halt.

Most distributed graph processing systems employ the paradigm called “Think Like a Vertex”. Programmers write programs from the viewpoint of a vertex. For instance, in
Figure 2.1: **Pregel Paradigm**: An example of the Shortest Paths algorithm in Pregel. Dotted arrows represent messages. Each superstep, a vertex that received a message in the previous iteration sends its value to its neighbours, until there are no more messages sent.

PageRank [14], the equation to update a vertex’s rank is as follows:

$$PR(v) = \sum_{q,(q,v)\in E} \frac{PR(q)}{|out(q)|} \times 0.85 + 0.15$$ \hspace{1cm} (2.1)

where $out(q)$ represents outgoing edges from vertex q, $PR(q)$ is the PageRank of vertex q, and E is the graph’s edge set.

2.1.1 Giraph

Apache Giraph was developed as the open source framework built on the Pregel paradigm. It is an iterative graph processing system that is built for high scalability. Facebook actively uses Giraph to analyze the social graph formed by users and their connections. Giraph added new functionality to the Pregel model by introducing things like master computation,
sharded aggregators, edge oriented input, out-of-core computation and more. Built in Java and integrated with HDFS and Hadoop, we found it ideal to use it for our work.

2.1.2 Graph Algorithms

Several algorithms can be expressed using the Gather-Apply-Scatter paradigm, and each one of them has different computation and network characteristics.

- **PageRank** - Used to rank websites in a web link graph.
- **Approximate Diameter** - Used to find the diameter of the given graph.
- **Undirected Triangle Counting** - Counts the number of three edge cycles in a graph.
- **Single Source Shortest Path (SSSP)** - This algorithm computes the shortest path from a single vertex to all other vertices in the graph.
- **K-Core Decomposition** - This algorithm finds a maximal subgraph of a graph G in which all vertices have degree at least k. Batagelj et al. [15] developed a parallel version of it.
- **Graph Coloring** - This algorithm assigns labels (colors) to graph vertices such that no two adjacent vertices have the same label.

Frameworks for distributed graph processing have also found their use in expressing machine learning algorithms. For instance, PowerGraph ships with an implementation of Latent Dirichlet Allocation [16], used in analyzing text corpora, and collaborative filtering [17], used in providing recommendations to users based on their interests and the interests of other users. Other examples include matrix factorization [18], click through rate prediction [19], and Collapsed Gibbs Sampling [20]. Given the growing interest in machine learning and massive amounts of data available, optimizing the performance such frameworks has become increasingly important.

2.2 MULTI-TENANCY IN CLOUD SYSTEMS

Multi-tenancy is a standard approach to resource consolidation in cloud computing, in order to reduce operating costs. This involves multiple users using the same underlying central infrastructure. Multi-tenancy thus necessitates systems for access control, isolation, fairness, etc. For instance, a failure in a job of tenant A should not adversely affect the jobs
of tenant B. Similarly, if tenant A submits an overwhelmingly large number of jobs to the cluster, tenant B’s jobs should not starve for resources.

Multi-tenancy also opens up the possibilities of SLOs (Service Level Objectives) wherein the system should make certain minimum guarantees to tenants. For instance, a multi-tenant database system might guarantee that 95th percentile latencies on queries will fall below a certain threshold.

Alternatively, multi-tenancy allows for different priorities between the requests of different tenants. For instance, if the same cluster is used for both production jobs that may impact business intelligence, making them time critical (e.g., ad click analysis might need to be done quickly) and research jobs, which may include experimental algorithms that are not as business critical. The scheduler may choose to preferentially schedule the jobs of the former, to ensure they finish quickly. In order to free up cluster resources, it may even preempt the relatively low priority jobs so that business critical jobs may be run. For instance, the YARN Fair Scheduler [21] can be configured to allow jobs from certain pools (say, production workloads) to kill tasks in other pools (say, research jobs) to make room to run. This feature is also supported in the YARN Capacity Scheduler [22]. Other multi-tenant systems are discussed as part of related work in Chapter 3.

2.3 YARN

The YARN (Yet Another Resource Negotiator) scheduler was introduced in Hadoop 2.0 [23]. A key concept in YARN is the notion of a container, which is a unit of resource allocation in the cluster. For instance, the ResourceManager (the ‘master’ that handles resource allocation in the cluster) can be configured to allocate containers that contain 1 GB of memory and 2 vCPUs. In the general workflow of a YARN application, an Application Master (AM) is started on a single container, and then used to bootstrap the rest of the YARN application, by requesting containers from the ResourceManager in order to run the various tasks of the job.

For a Giraph application, the additional containers act as either a master or a worker. The master is responsible for coordinating the supersteps of graph processing. The workers are responsible for running the vertex programs, updating their own state, sending messages to other vertices, and voting to halt the computation.

In a typical multi-tenant scenario, the YARN cluster is set up with multiple queues. For instance, the cluster may have two queues, one for research jobs and one for production jobs. YARN has a number of scheduling strategies to determine the distribution of resources between these queues eg. Fair Scheduling and Capacity Scheduling.
Fair scheduling ensures that each queue gets an equal share of cluster resources over time. However, this does not allow any notion of priority between the different queues, which may not necessarily be the case in multi-tenant clusters.

Capacity scheduling guarantees each queue a specified portion of the cluster capacity over time. For instance, high priority jobs might be guaranteed 75% of the cluster resources (in terms of memory or CPU, depending on configuration), while low priority jobs only get 25%. Capacity scheduling also allows configuration of hierarchical queues for more fine grained resource allocation.
CHAPTER 3: RELATED WORK

In this chapter, we discuss previous literature which is related to our work in this thesis. Since we propose a multi-tenant preemptive scheduler for graph processing jobs, we look at related work in domains of scheduling, graph processing and multi-tenancy.

3.1 CLUSTER SCHEDULING

There has been significant work on building various types of cluster schedulers in prior literature, including centralized schedulers such as YARN [23], Quincy [24] and Firmament [25] to distributed schedulers like Mesos [26] and Sparrow [27], to hybrid schedulers like Eagle [28] and Hawk [29]. However, most of them focus on addressing scalability and performance challenges of schedulers, and do not directly deal with multi-tenancy.

3.2 MULTI-TENANT RESOURCE MANAGEMENT AND SCHEDULING

There has been significant work on multi-tenancy in the domain of database systems, such as DAX [30], ElasTRaS [31], Zephyr [32], Albatross [33], SWAT [34], and Schism [35]. Each of them present a database design or technique that enhances multi-tenancy. However, they do not deal with job scheduling. STeP [36] is also a multi-tenant system for Database as a Service (DBaaS) workloads which looks into machine level resources to make scheduling decisions. However, our work only considers container level granularity for making scheduling decisions to avoid the overhead of looking into machine level statistics. Our work focuses more on when to schedule rather than where to schedule.

There has been prior work on multi-tenancy in other domains, such as Pisces (key-value store), Natjam [12] (deadlines in MapReduce scheduling), Amoeba (for data intensive computation) [37], and Henge [38] (stream processing). However, none of them address scheduling in graph processing systems like Giraph or PowerGraph. We believe that adding graph processing domain specific knowledge to a scheduler could help it make more efficient scheduling decisions for the entire cluster. Some schedulers have also explored enforcing Service Level Objectives (SLOs), such as Omega [39], Cake [40], Centrifuge [41], Azure [42], and Jockey [43].
3.3 GRAPH PROCESSING SYSTEMS SCHEDULING

OPTiC [11] introduces a multi-tenant scheduler for graph processing workloads. However, that work is orthogonal to ours because they do opportunistic scheduling to pre-schedule a job on a set of machines and do not cover preemptive techniques.
CHAPTER 4: SYSTEM DESIGN

In this chapter, we give an overview of the system goals for Mélange followed by a discussion of its overall architecture. We explain our system design in detail and talk about the decisions behind our choices.

4.1 DESIGN DIMENSIONS

To provide optimized completion times for high priority jobs, we sometimes need to free cluster resources by preempting lower priority jobs. This section discusses how we achieve this. We enumerate the different dimensions along which we design an efficient multi-tenant scheduler:

1. Decide which job should be scheduled: Given a queue of waiting jobs, the scheduler decides which job should be scheduled next based on priority and resource requirements. Low priority jobs can afford to wait if cluster resources are not available, whereas higher priority jobs might need to be immediately scheduled.

2. Decide whether some job(s) need to be preempted: If there aren't enough cluster resources available for a job to run, decide whether a lower priority job has to be preempted, based on the cost of preemption.

3. Decide how this job has to be preempted, by either killing or checkpointing it:
 - Eviction by Killing: If a job is evicted by killing, all the prior work that has been done by the job will be lost. When this job is resumed, it will start from the ingress stage again. The benefit of this type of eviction is that the waiting job can be scheduled immediately without any delay.
 - Eviction by Checkpointing: If a job is evicted using checkpointing, the job will be restarted with a previously saved state and will finish quicker than the resume from start. However, checkpointing a job will take time which will delay running the waiting job.

To build such a scheduler, we look at two separate goals: efficient scheduling policies and efficient eviction policies. Mélange APIs are designed to distinguish mechanisms (the actual
enforcement of scheduling or eviction decisions) from policy (making such decisions). Thus, Mélange simplifies the task of writing a new scheduling or eviction policy, by allowing any user-defined scheduling functions to be called.

4.2 ARCHITECTURE

We extend Apache Giraph [6] to build Mélange. Giraph has abstractions that allow jobs being submitted to a YARN cluster, and it runs atop Apache ZooKeeper [44] for communication between workers. Any data that is accessed by Giraph is stored in HDFS [45]. Over Giraph, we developed a cross-layer scheduler that can accept graph processing jobs from users and sync with YARN to schedule jobs efficiently. We are able to directly plug into YARN because our work focuses only on using the number of containers for scheduling (we don’t worry about which machine in the cluster the job should be submitted at).

Mélange has a YARN-Client to keep track of the cluster and job state, based on which it decides which order jobs would be submitted to YARN. Within the Mélange scheduler, we have two engines, the Scheduling Engine and the Eviction Engine. The Scheduling Engine decides which job will be scheduled next, and the Eviction Engine decides if there needs to be a job evicted and how to evict that job from the cluster. Both modules are independent from each other to provide easy APIs to switch scheduling and eviction policies. The third

![System Design](image)

Figure 4.1: **System Design:** Our cross-layer scheduler is built atop Giraph, and uses ZooKeeper and HDFS for its internal engines.
module in our scheduler is the Progress Estimation Engine, which keeps track of running jobs’ metrics and comes up with a comparable score for each job. This progress is used by the Eviction Engine to evict jobs. We discuss all policies that we implemented in these engines in Chapter 5 and Chapter 7.

Our scheduler can be invoked when a new job is submitted, or when a running job finishes. It also periodically runs as a background daemon in search of jobs near completion. Each time the scheduler is invoked, it first updates its local state, by pruning finished jobs from its data structures and updating the progress metrics of currently running jobs. We do this by syncing with the YARN cluster state.

To track each job in the cluster, Mélange issues its own job IDs rather than leverage the existing YARN application IDs. This is because, over the course of a job’s lifetime, it may be preempted and restarted multiple times, each time obtaining a different application ID, necessitating an identification that is independent of the executing YARN application. The scheduler tracks the life cycle of a job, which can go through various states as shown in Figure 4.2:

![State Diagram]

Figure 4.2: State Diagram: The various states a process can be in after being submitted to the scheduler.

In addition, Mélange also tracks the total number of free containers available in the cluster. The total number of containers in a cluster are based on the physical resources available on each machine and the number of total machines in the cluster, hence making the initial configuration of total containers easy.

Following this, Mélange runs the configured engines in order to produce a scheduling decision (the list of jobs to be run and preempted, respectively). The Eviction Engine also further decides whether to checkpoint or kill (any) jobs based on the job requirements and the data received from the Progress Engine.

In order to track application progress, we leverage ZooKeeper as the coordination service between the running jobs and our scheduler. Each job’s master updates its progress metrics on ZooKeeper, and this information is periodically read by our scheduler whenever it makes a scheduling pass (either periodically or on job submission). Since the master and
workers already interact with ZooKeeper to coordinate the supersteps of the algorithm, this additional data does not add overhead to our algorithm running time.
CHAPTER 5: SCHEDULING POLICIES

In this chapter, we discuss different policies for scheduling that we have implemented with Mélange. Some of them are well studied in literature [46], while others leverage graph application progress in making decisions. Mélange’s Scheduling Engine provides an API to write different policies that the scheduler can run. Given the set of waiting jobs, this component decides which job to run based on the current waiting job priorities, waiting times and cluster state.

The choice of scheduling policy is important because it can affect the turn around time for jobs. We propose modifying the existing classical scheduling algorithms to utilize the progress updates obtained from graph processing jobs, as well as to account for priority, and starvation time. In this section we talk about our proposed modifications.

5.1 NOTATION

Let $J = (j_1, j_2, j_3, .. j_n)$ be the set of all the jobs. We use $T = (t_1, t_2, t_3...t_n)$ to represent the inter-arrival times of these jobs respectively. $\text{containers}(j_i)$ and $\text{priority}(j_i)$ represent the resource requirements and priority of job j_i respectively. Furthermore, we can define two sets, RJS and WJS, which represent the current running and waiting jobs in the cluster, respectively.

Given the above notation, we explore modifying the classical scheduling algorithms to account for priority and starvation time in the following sections.

5.2 PRIORITY SCHEDULING

One of the major goals of this thesis was to reduce the waiting time for high priority jobs and we look to address that first. Priority based scheduling is one of the most common strategies used in batch systems. Traditionally it is a non-preemptive scheduling strategy where a job with the highest priority is scheduled first. Since we are running a multi-tenant system which has jobs of different priority, this was intuitively the first scheduling strategy that we chose to explore.

However, this strategy can lead to starvation in lower priority jobs. It is also important to schedule as many jobs as possible at a time so that the throughput remains high. Given these requirements, this strategy had to be modified to account for resource requirement,
waiting time and the eviction of currently running, low priority jobs. Given two waiting jobs, we propose the following heuristics for Priority Scheduling:

1. We want to first schedule the job which is higher in priority.

2. If the priorities of both jobs are the same, we look at the resource requirement of the two jobs and schedule the one with lower resource requirement. With this, multiple jobs can be scheduled leading to a higher throughput.

3. If both jobs need the same amount of resources, then we schedule the job that has been waiting the longest.

The above heuristics can be represented in the form of a cost function. In summary, we want to schedule a job with highest priority or very high starvation first, and we capture this by the following equation:

\[
\text{cost}(j) = w_1 \times \text{priority}(j) + w_2 \times \text{waiting}(j)
\] (5.1)

In the above equation, \(\text{waiting}(j_i) = \text{current} - t_i\).

Equation 5.2 has three parts over which it sums over. The first part of the equation captures the priority of the job, and the second part of the equation captures the container requirement. We have an inverse relation for container requirement so that lower containers can give us a higher score. The last part of the equation captures the waiting time of the job to avoid starvation.

\[
\text{schedule_next} = \operatorname*{arg\max}_{j_i \in WJS} \text{cost}(j_i))
\] (5.2)

The job with the highest cost would be selected by the scheduler, as captured by Equation 5.2. We implement this strategy using the APIs provided by the Scheduling Engine and compare it with the baseline first in first out (FIFO) and our other implemented strategies in Chapter 8.

5.3 BEST FIT

Our second scheduling policy is the Best Fit scheduling. It gives priority to those jobs which have the closest resource requirements to what is available in the cluster. We mod-
ify the classical scheduling algorithm to incorporate priority and waiting time. Given two waiting jobs, we have the following heuristics to modify Best Fit:

1. If both jobs need fewer number of containers than the number of available containers, then:
 - The job which needs more containers (better fit) should be scheduled first.
 - If both jobs need the same number of containers, then the job with the higher priority should be scheduled first.
 - If both jobs have the same priority, then the job with the higher waiting time should be scheduled first.

2. If one job needs higher number of containers than currently available and the other job needs lower number of containers than currently available:
 - Schedule the job with lower number of containers requirement.

3. If both jobs need higher number of containers than currently available:
 - Schedule based on priority and waiting time, and then let the eviction engine take care of whether and how to preempt enough jobs to make resources available.

Using α to denote the number of containers available in the cluster currently, we express the above heuristics in the form of a cost function:

$$
cost(j) = w_1 \times \frac{1}{\epsilon + (\alpha - \text{containers}(j))} + w_2 \times \text{priority}(j) + w_3 \times \text{waiting}(j)
$$

The first term of Equation 5.3 captures the “Best Fit” score. Having an inverse relation with $(\alpha - \text{containers}(j))$ ensures that the score is highest when α is equal to $\text{containers}(j)$. We add ϵ, a small constant to avoid divide by zero errors. The second term of the equation adds a cost for the job priority, so a job with a higher priority will have a higher score. The third part of the equation adds a value to the cost for starving jobs. A job which has been waiting longer would have a higher total cost. Mélange will schedule the job which has the highest cost value, as given in Equation 5.2. The weights can be tuned to increase or decrease the value of the different terms.

We compared Mélange Best Fit with vanilla Best Fit and found that our policy reduces the number of preemptions, as seen in Table 5.1. We implement this strategy and compare it with other policies in Chapter 8.
Table 5.1: **Number of Preemptions**: Mélange Best Fit reduces the total number of preemptions.

5.4 PREEMPTIVE SHORTEST JOB FIRST

We next explore the preemptive version of Shortest Job First, where the scheduler decides to schedule the job which has the shortest execution time. Apriori knowledge of the run time of a job is a difficult problem. There are a lot of varying factors including the size of the graph, the algorithm being run and the number of workers for the job. We ran some profiling experiments with different graphs and workers to come up with an approximate metric for run time. Our results are shown in Figures 5.1 and 5.2.

![Run time Variation with graph size](image.png)

Figure 5.1: Run time Variation with graph size: The run time of a job increases with the size of the input, enabling better estimates for our Shortest Job First policy.

As shown above, we found that the run time of a job is highly correlated with the size of the input graph. A job which is submitted with a graph size of million vertices is likely to take more execution time than a job that is submitted with a graph size of 150000 vertices. We can also see that the number of workers also affect the total time that the job takes to execute. Higher the number of workers, the faster the job takes to run. However, as seen in Figure 5.2, the improvements saturate after a certain level of parallelism because the cost of dividing the graph is higher than the benefit of multiple workers.

Based on our observed results, we device a cost function for Preempted Shortest Job First that can account for estimated running time of the job as well as priority and starvation.
Figure 5.2: **Run time Variation with number of workers:** The run time of an algorithm decreases up to a point as workers are added, after which the coordination overhead increases.

\[
\text{cost}(j_i) = w_1 \times \text{waiting}(j_i) \times \text{priority}(j_i) + w_2 \times \frac{\text{containers}(j_i)}{\text{size}(\text{graph}_i)} \tag{5.4}
\]

We aim to schedule the job which maximizes the score given by Equation 5.4. The first part of this equation is the starvation score. We weigh it by the priority of the job, so that long waiting high priority jobs get more weight. The second part of the equation captures the estimated running time of the job. We have seen a correlation between the number of containers and the size of the input graph. Our score will maximize for a higher number of containers and a smaller graph size. We have chosen this relation because a larger graph size is linked with higher running time, and more parallel jobs tend to finish faster as seen from the graph. There are weights assigned to each of the terms in the equation which can be tuned to increase or decrease the value given to starvation of a job.
CHAPTER 6: PROGRESS COMPUTATION

In this chapter, we discuss the metrics that are used by Mélange to compute progress of running jobs. This progress is computed by the Progress Engine. This module of our system aids the Eviction Engine to decide which jobs to evict.

There can be multiple ways in which one can compute the progress of a graph processing job. One such way would be to leverage YARN or Mesos metrics. However, such metrics will not generalize for graph processing jobs that do not rely on staged dataflows, e.g., Chaos [47]. Rahman et al [11] propose graph-domain techniques of measuring progress. We build upon that notion and propose further optimizations that we use for Mélange.

6.1 ACTIVE VERTEX COUNT PERCENTAGE

Graph algorithms in Giraph are iterative, and in each iteration vertices receive and send messages. Based on the messages they receive, the vertices can change their own state. Vertices are allowed to become inactive - which essentially means that they have no more state change or messages to send. Once a vertex becomes inactive, Giraph does not wake it up, unless it receives new messages. During a single run of a graph processing job, the percentage of active vertices can vary, as discussed in [11]. In most algorithms, the active vertices follow the trend of increasing with time till all vertices become active, after which the active vertex percentage starts to decrease.

6.2 SUPERSTEPS

In certain algorithms like PageRank, the percentage of active vertices remains constant throughout the algorithm run. Such algorithms only halt after a fixed number of supersteps. Since these supersteps are provided when submitting a job to our scheduler, we use the percentage of supersteps completed as a progress metric.

6.3 SPEED OF ALGORITHM RUN

Based on the graph size, and the algorithm running, certain jobs tend to finish faster than others even if they are at the same progress. For example, one iteration of PageRank is much slower than one iteration of SSSP on the same graph. In such case, given that the SSSP job
started later than PageRank, it is possible that it overtakes it and finishes faster. Since jobs running in a cluster can be heterogeneous, we propose also utilizing the rate of change of progress, which is the speed of the run, as another metric.

\[speed = \frac{\text{progress}}{\text{timeTaken}} \] \hspace{1cm} (6.1)

Here, progress can be calculated using either of the above two ways.

6.4 MEASURING METRICS

All the above metrics can only be used if all workers send consolidated individual metrics to a central worker. Running in a distributed environment, each partition contains local statistics about how many vertices are active. These numbers are consolidated and sent to our scheduler by the ApplicationMaster. To achieve this, all individual partitions write their statistics to ZooKeeper. In each superstep, the Master accesses these statistics from ZooKeeper and consolidates them. After aggregating all the metrics, the Master writes these metrics back to ZooKeeper with the unique job identification. As a part Mélange, the Progress Engine can go over the list of running jobs and directly access their metrics from ZooKeeper.
CHAPTER 7: EVICTION POLICIES

In this chapter, we talk about the design of our adaptive Eviction Engine. Every time a job is evicted, it comes with a cost of the context switch - the time it takes to preempt and the amount of duplicate work a job will have to do. To keep this cost minimized, we propose an adaptive Eviction Engine. When the Scheduling Engine decides which job it has to schedule, the decision is passed on to the Eviction Engine if enough resources are not available in the cluster. Given a job j_i which has to be scheduled, and the set RJS of all the running jobs, the Eviction Engine answers the following questions:

1. Which job(s) to evict from RJS?
2. What is the best eviction mechanism for each individual job that has to be evicted?

In the following sections, we talk about how Mélange decides to answer the above two questions.

7.1 EVICTION POLICY

There is a lot of past literature surrounding eviction policies. For Mélange, we consider the following two policies for our Eviction Engine.

7.1.1 Progress Based Eviction

This strategy aims to evict new jobs - those jobs which have not made enough progress yet. Evicting jobs based on progress has the advantage of saving work. Basically, if a running job has made 90% progress, we do not want to evict it in comparison to a job which has made just 10% progress. Given the progress of each job via the Progress Engine, we start to eliminate the jobs with lowest progress till the time there are enough resources available for the new job to run. The progress engine returns a normalized score for all jobs, and it can use different ways to calculate scores for jobs running different graph algorithms. Our work focuses on this kind of eviction.

7.1.2 Resource Based Eviction

Given that we want to schedule j_i, which requires $c = containers(j_i)$ containers to run, we find the minimum number of running jobs to evict. This means that we want to find
those jobs, which will release just enough containers for the new job to be scheduled.

\[\min_{\text{size}(RJS)} \sum_{j \in RJS} \text{containers}(j) = c_{\text{required}} \quad (7.1) \]

This can be thought similar to the best fit scheduling algorithm. In scheduling we find the job that best fits the total number of containers available, and in eviction, we look for the running job that best matches the number of containers required by the job which is waiting to be scheduled next. Since we are not looking at a lot of graph domain specific knowledge in this type of eviction, implementing this remains a part of our future work.

7.2 EVICTION MECHANISM

Previous work has shown that naive killing of jobs for eviction is not necessarily optimal [48]. On the other hand, techniques like checkpointing lead to an initial overhead of saving the state of the job and resuming it, adding storage and compute overhead (due to saving state in a DFS, and optionally compressing checkpoint data for storage). We explore trade-offs in this section.

7.2.1 Kill-based Preemption

Killing a job is a faster process, but it discards any progress a job has already made, that is, when the job is rescheduled, it must be restarted from the ingress stage. Thus, it may be the appropriate choice if a job has made little progress (say, if it is still in the ingress phase), or the containers must be quickly freed and given to another job (since a job being checkpointed will continue to hold resources until it saves its state).

7.2.2 Checkpointing Based Preemption

Checkpointing is a work-saving technique for eviction. As part of checkpointing, the graph state is saved to disk, and a job can resume from that saved state later in time. Traditionally, periodic checkpointing is used for fault tolerance in graph processing systems, wherein the nodes save their respective states to a DFS after a specified number of supersteps. However, since it is an expensive operation (due to the overhead of writing to replicated storage in a DFS), it is usually disabled, and failed jobs are restarted [1]. Instead, we consider using on-demand checkpointing, similar to Natjam [12]. Thus, Mélange can signal the job to checkpoint at some point during this execution. This allows saving the progress of a job only
if needed. This approach may work better if we are evicting a job that has made significant progress, but must be preempted. Thus, we can avoid repeated a significant part of the computation by leveraging checkpoints stored in a DFS.

7.2.3 Edge Migration

An alternative to preemption would be dynamically adding or removing workers to/from jobs at runtime. This would be a more elastic approach to scheduling, having the benefit of avoiding preemption completely. However, it presents some additional overhead in that a job will presumably have to stall in its current superstep while the graph is repartitioned across the workers. This is out of the scope of this current work right now. Indeed, prior work has explored some of these ideas, although not in the context of multi-tenancy [49]

7.3 MICROBENCHMARKS

As discussed above, different eviction mechanisms come with different trade-offs. We wanted Mélange to be able to make a decision at run time on which eviction method to use. The scheduler should be able to switch between different eviction mechanisms. We performed some microbenchmarks with jobs of varying sizes, and explore checkpointing and killing the job as ways to preempt in different scenarios. For the purpose of these experiments, we set up an Emulab cluster of 10 d710 nodes, and configure YARN to create 25 containers. We generate synthetic traces which just schedule one job at a time and evict it during different stages of progress. We use synthetic Power-law graphs [50] for our experiments, and run jobs with SSSP and PageRank.

7.3.1 Time to Checkpoint

While checkpointing leads to saving work that has already been done by a job, it also adds an extra overhead to the new jobs waiting to be scheduled. The new job can not be scheduled till the time the evicted job finishes checkpointing. The total time to checkpoint a job can vary based on various metrics, and we explore the effect of graph size on the same. We measure the time to checkpoint at different progress stages of a job run.

As seen from Figure 7.1, the time that it takes to checkpoint varies with the progress of the job, as well as the graph size. It takes lesser time to checkpoint a job which is running on a smaller graph size compared to a job which is running on a larger graph. This is because a smaller graph size means that there is less state that needs to be checkpointed. We also
Figure 7.1: **Effect of graph size and progress on the time to checkpoint:** Larger graphs take more time to checkpoint due to the increased amount of state to store. Jobs running on smaller graphs sometimes finish before receiving the signal to checkpoint.

observe that a job finishes before receiving a checkpoint signal at higher progresses. This can be seen for the job that was running on the smaller graph in Figure 7.1. This observation leads us to categorize jobs as *slow* and *fast*. If jobs are fast, their progress increases quickly, and if a checkpoint is triggered at a higher progress, then it is very likely that the job finishes before the checkpoint signal is processed.

7.3.2 Restart to Finish

We wanted to measure the benefits of evicting jobs using checkpointing. For this purpose, we measure **Resume Finish Time**, which is the amount of time that an evicted job takes to finish after it is resumed. We evict a job at different progress stages using both checkpointing and killing and measure the Resume Finish Time by rescheduling it immediately after it is evicted.

As seen in Figure 7.2, for check pointed jobs, the Resume Finish Time decreases as the progress at eviction increases. This is expected, because as we checkpoint at higher progress, there would be lesser amount of work to be done when the job restarts. Checkpointing also saves a job the overhead of loading and partitioning graph, which can really be huge in big graphs. As seen from the plot, we do not get any benefit of checkpointing if the job is evicted in the ingress stage. This is because for checkpointing a job needs to have an initial state, and the state is not fully formed during ingress. This leads us to conclude that if a job is in the ingress stage, we should evict by killing it, rather than checkpointing it. The resume
Figure 7.2: **Checkpoint and killing jobs:** Killing and restarting jobs tends to incur a higher overhead, except at the very beginning of a job.

Finish time is the same as when the job is evicted by killing. We can also see that in the graph, when the job is checkpointed at 0.01 progress, the benefit of checkpointing is not that high - and the overhead of keeping a high priority job waiting would not be worth it.

Based on our microbenchmarks, we formulate the decision tree in Figure 7.3 to decide whether a job should be killed, checkpointed, or allowed to finish. When a running job is in the ingress phase or progress is less than 0.001%, the overhead of checkpointing is not worth the improvements in Resume Finish Time. Checkpointing a job in this stage would mean higher waiting times for the jobs that are next to be scheduled. When the progress of a job is less than 50%, the we can safely checkpoint the job because our microbenchmarks show significant improvements in Resume Finish Time. If the progress is greater than 50%, then we look at the speed of the job progress. If the job is progressing quickly, then it is likely to end before checkpointing finishes and the Eviction Engine should decide to just wait for the job to finish instead. If a job is slow, and has made greater than 50% progress, then we can checkpoint. These thresholds are independent of the underlying cluster size and workload because they look at the individual job granularity, and do not need to account for the overall state in any way.
Figure 7.3: **Preemption Method decision tree:** Based on our microbenchmarks, we formulate a decision tree to determine whether a job should be killed, checkpointed, or allowed to complete.
CHAPTER 8: EVALUATION

This chapter presents our experimental results with different workloads, scheduling policies and eviction strategies. We show how we have achieved each of our goals as laid out in Chapter 1:

1. To run a consolidated cluster of graph processing jobs that can support different priorities and deadlines.
2. To achieve low waiting time for high priority jobs.
3. Avoid starvation of low priority jobs.
4. Minimize overhead and slowdown by keeping context switch time minimized.
5. Achieve high cluster utilization.

8.1 EXPERIMENTAL SETUP

We run our experiments on an Emulab [51] cluster of 25 containers. We use eleven d710 nodes, and set up Hadoop with YARN having workers of 2 GB each. For our workloads, we use Yahoo! MapReduce traces [12]. To the best of our knowledge, there is no publicly available workload for graph processing jobs. Since Giraph converts jobs internally to mappers and reducers, we found it suitable to use the MapReduce job traces from Yahoo! for our experiments.

We use the total running time of the job to decide how big the graph should be. The number of mappers and reducers are used to decide how many workers the job should be submitted with. All generated graphs are Power-law and are generated by Darwini [50], a synthetic graph generator. We combine the production and research traces to one trace containing both kinds of jobs and use it for our evaluation. By providing the functionality to submit graph processing jobs of different priorities, we have achieved our first goal.

8.2 WAITING TIME

The turn around time of a job involves (1) the waiting time, i.e., the amount of time a job has to wait before it has been given enough resources to start running, (2) the running
time, i.e., the amount of time a job spends running. Since the running time of a job will be indifferent to the underlying scheduling policy in use, the turn around time of a job will only depend on the waiting time.

8.2.1 Effectiveness of Proposed Scheduling Policies

To measure the effect on the waiting time, we use a Yahoo! trace of 100 jobs with a mixed number of production and research jobs. We rerun the same trace with different scheduling policies and measure the waiting time.

We evaluate our three proposed policies - Priority Scheduling, Best Fit and Preemptive Shortest Job First, with their respective vanilla versions. As seen from Figure 8.1, the high priority waiting time is reduced for all three scheduling policies in Mélange. The low priority waiting time increases for Preemptive Shortest Job First and Best Fit, but we can see that the increase is within 20%. This is not significant compared to the reductions observed for high priority jobs. With our proposed scheduling policies in Mélange, high priority jobs wait only for about 24%-36% time compared to the vanilla original algorithms. The best (minimum) wait time improvement for high priority jobs is observed by Preemptive Shortest Job First. From this, we can conclude that we have achieved our second goal i.e., achieving low waiting time for high priority jobs.
8.2.2 Comparison between Proposed Scheduling Policies

To compare how our proposed policies perform with respect to each other, we evaluate the waiting time of low and high priority jobs running the same trace with different policies in Mélange. As seen in Figure 8.2, all three of our proposed algorithms reduce the waiting time of high priority jobs compared to the baseline FIFO scheduling. We observe that Preemptive Shortest Job First has the lowest wait time for both the high and low priority jobs.

<table>
<thead>
<tr>
<th></th>
<th>Best Fit</th>
<th>Priority Scheduling</th>
<th>Preemptive Shortest Job First</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemptions</td>
<td>18</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 8.1: Number of jobs preempted with each policy in Mélange.

From Figure 8.2 we can see that the waiting time for low priority jobs in Priority Scheduling and Best Fit increases in comparison to the baseline FIFO. The waiting time of low priority jobs can be high because of (1) the number of evictions are high or (2) the scheduling policy does not decide to schedule job. As seen in Table 8.1, Best Fit preempt the most number of jobs, which is why the waiting time for low priority jobs is highest for this policy. For Priority Scheduling, the high waiting for low priority jobs can be attributed to the scheduling decisions made by the policy, i.e., not scheduling low priority jobs till there are high priority jobs waiting.

In both these policies, the increase in low priority waiting time is under 15% of the high priority waiting time as seen in Figure 8.2. From this we conclude that we have achieved our third goal, i.e., avoiding starvation for low priority jobs.
8.2.3 Effectiveness of Eviction Mechanism

Figure 8.3: Waiting time CDF for low priority jobs with different eviction mechanisms: Mélange Eviction reduces the waiting time for low priority jobs.

Our adaptive Eviction Engine is based on our microbenchmarks and subsequent decision tree as discussed in Chapter 7. We measure the improvements in waiting time by running a trace with three different eviction mechanisms: only checkpointing, only killing and using the adaptive technique implemented in Mélange. As seen in the wait time CDF in Figure 8.3, Mélange’s dynamic mechanism reduces the wait time for about 50% of the low priority jobs. Towards the tail, the Mélange eviction mechanism performs similar to the other preemption mechanisms. This is because the scheduling policy chooses not to schedule low priority jobs over waiting high priority jobs.

We measure the waiting time accounting for both low and high priority jobs in Figure 8.4. While Mélange’s dynamic eviction shows more prominent results for the waiting time of low priority jobs, Figure 8.4 shows that there is also an improvement in the overall waiting time. From this we can conclude that we have minimized the cost of context switching during eviction and hence achieved our fourth goal.

8.2.4 Different Traces

We measure the waiting time of high priority jobs running in three different traces. We tune the ratio of research (low priority) to production (high priority) jobs and see the effect of our scheduling policies on the waiting time by looking at the wait time CDF for production
Figure 8.4: Waiting time CDF for all jobs with different preemption mechanisms. Mélange Eviction reduces the waiting time for all jobs, not just low priority jobs.

Production only workload: We run a trace with 100 production jobs from the Yahoo! trace [12] with each of our scheduling policies and the dynamic eviction. As seen in Figure 8.5, the CDFs of all four policies are similar. Best Fit has the lowest waiting time for 45% of the jobs, and the tail is similar for all four policies. We can conclude that none of our scheduling policies have any overhead compared to baseline FIFO.

1:3 Research to Production Jobs: We run a trace in which every third job is a research job.

Figure 8.5: Production-only Workload: Our policies have no overhead in the job waiting time for a production-only workload.
job. As seen in Figure 8.6, all three of our proposed scheduling policies perform better than baseline FIFO for the waiting time of high priority jobs.

1:1 Research to Production Jobs: We run a trace of 100 jobs with the same number of

![Figure 8.6: 1:3 Research to Production Jobs](image)

Figure 8.6: 1:3 Research to Production Jobs: All three proposed scheduling policies have similar waiting time and outperform FIFO.

research and production jobs. As seen in Figure 8.7, FIFO has a very high waiting time for high priority jobs compared to our proposed scheduling jobs. This is because FIFO processes jobs in order, and the high priority jobs that come later will wait for the already scheduled low priority jobs to be scheduled first. Our proposed scheduling policies will preempt the running low priority jobs.

![Figure 8.7: 1:1 Research to Production Jobs](image)

Figure 8.7: 1:1 Research to Production Jobs: Our scheduling policies reduce the waiting time for high priority jobs compared to baseline FIFO and Preemptive Shortest Job First has the minimum waiting time.
From these experiments we can conclude that the improvements from the scheduling policies implemented in Mélange increase as there are more research jobs in the workload. The least improvements observed are in a production-only workload and the maximum improvements are in a 1:1 production-research ratio. From these observations we are able to conclude that our scheduling policies perform better or same compared to baseline FIFO.

8.3 CLUSTER UTILIZATION

Multi-tenancy has various benefits, including better resource utilization. To measure the cluster utilization, we measure Underutilized Containers in Mélange. We define this metric as average percentage of containers that are not in use whenever there is at least one job in the waiting queue. Containers can be unused in the following scenario:

1. There are no jobs to schedule.
2. The scheduler is slow in making the scheduling decision.
3. The scheduling policy is inefficient with its selection of jobs.

Since we want to measure the effectiveness of our scheduling policy, we only want to look at free containers when there is job available in the waiting queue. Mélange executes the scheduling policies at the same speed, hence our defined metric of Underutilized Containers would only capture the efficiency of our scheduling policy on resource utilization.

Table 8.2 shows the Underutilized Containers for our scheduling policies. We can see that Best Fit gives us the best cluster utilization with Underutilized Containers at 9.6%, compared to FIFO which has 14.3% Underutilized Containers. From this, we can conclude that we have achieved our fifth goal i.e., to achieve high cluster utilization.

<table>
<thead>
<tr>
<th></th>
<th>FIFO</th>
<th>Best Fit</th>
<th>Priority Scheduling</th>
<th>Preemptive Shortest Job First</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underutilized Containers</td>
<td>14.3%</td>
<td>9.6%</td>
<td>12%</td>
<td>14.24%</td>
</tr>
</tbody>
</table>

Table 8.2: **Cluster Utilization**: Average percentage of free containers when there is at least one job waiting.
CHAPTER 9: CONCLUSION

In this thesis, we discussed the design and evaluation of Mélange, a cross-layer preempted scheduler for graph processing jobs. By making a modular scheduler, we allow developers to plug in their custom policies for scheduling and eviction. We also present techniques for measuring the progress of a job using "active vertices" and superstep percentage. We find that using domain-specific knowledge can give insights that can be used for making better scheduling and eviction decisions. We design an Eviction Engine that can switch between eviction mechanisms at run time by using this domain-specific knowledge about the running jobs. Our evaluation shows that our policies are able to perform better than vanilla non-preemptive policies and that our adaptive eviction engine performs better than static preemption mechanisms.
CHAPTER 10: FUTURE WORK

We devise Mélange, a multi-tenant, preemptive scheduler for graph processing jobs in this thesis. We talk about adaptive eviction, where our Eviction Engine is able to pick the best eviction policy for the specific job to evict. In this chapter we talk about the various avenues to extend this work.

10.1 ADAPTIVE SCHEDULING ENGINE

In a multi-tenant cluster, the workload can change over a period of time. Based on the time of the day, a cluster can receive more production or research jobs. We want to explore characterizing the current workload based on parameters like waiting queue size, inter-arrival time of jobs, the ratio of production to research jobs and the size of the waiting jobs. This workload can change over a period of time, and a static scheduling policy might not be the best choice for such a workload that continues to change. We want to explore making our Scheduling Engine adaptive like our Eviction Engine. Based on the current workload, the Scheduling Engine can learn which scheduling policy to run.

10.2 EDGE MIGRATION

Killing jobs requires restarting the everything from scratch, while checkpointing may conserve job progress, it takes time to save the state of the job to the DFS, continuing to utilize cluster resources for a period of time after being preempted.

An alternative method we could explore would involve migrating edges or vertices between workers at runtime. This would enable elastically scaling up or down the job’s container allocation during job execution, allowing it to continue executing while enabling other jobs to make progress. However, this approach would also require halting the job momentarily while the workers migrate data among themselves. We consider exploring the potential tradeoff of this approach as future work in multi-tenant graph processing schedulers.

10.3 LIGHTWEIGHT CHECKPOINTING

If a job is checkpointed multiple times, it currently repeatedly stores the entire state of the graph algorithm, which may prove expensive in terms of storage and compute resources.
An alternative would be to use delta-based checkpointing, where additional checkpoints only track the changes in values between successive checkpoints. This may increase the time taken to restore a graph from checkpoints, but would reduce the time spent checkpointing and the state to be stored in the DFS. Integrating such lightweight approaches to checkpointing to our work may enhance the benefits of our preemptive scheduling algorithms.

10.4 PRESCHEDULING

Since the ingress cost includes the cost of loading graph data from the DFS, another optimization would be to ‘preschedule’ the next job on machines that are running jobs near completion. This would ensure data locality when the next set of workers are scheduled on those nodes. This approach has been shown to have benefits in [11]. It might be worth expanding the prescheduling feature by doing some initial partitioning before the workers have started.
REFERENCES

