
Reliable On-Demand Management Operations for
Large-scale Distributed Applications∗

Jin Liang, Indranil Gupta and Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
{jinliang, indy, klara}@cs.uiuc.edu

ABSTRACT
This paper argues for attention to, and proposes a novel
direction to solving, instant monitoring and management
tasks for large-scale distributed applications running across
hundreds of hosts. We present the MON (Management
Overlay Networks) approach1, which uses a novel concept
called on-demand overlays, in order to support instant com-
mands such as queries and software pushes. On-demand
overlays are built on-the-fly and probabilistically, by leverag-
ing weakly-consistent gossip-style membership information
underneath. Thus, they are lightweight in terms of mem-
ory, computation, and bandwidth. We augment on-demand
overlays with several notions of application-specified relia-
bility, and show how MON detects and adheres to these.
MON is available atop PlanetLab, and we present experi-
mental results. We conclude with a series of promising open
problems in this direction.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Communica-
tion.Distributed Systems

Keywords
Monitoring, Instant Commands, On-demand Overlays, Re-
liability

1. INTRODUCTION
Several wide-area and large-scale distributed computing

systems have emerged in the recent few years, e.g., util-
ity Grids [7, 30], experimental Grids [1], and lately Planet-
Lab [21]. More importantly, these large scale distributed in-

∗This research was supported in part by NSF CAREER
grant CNS-0448246 and in part by NSF ITR grant CMS-
0427089.
1This paper is an extended version of our workshop paper
[12], and includes additional contributions on augmenting
on-demand overlays with reliability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

frastructures have become increasingly popular for running
distributed applications such as content distribution [2, 5,
18, 34], application-level DNS [19, 22], cooperative caches
[8, 13], publish-subscribe systems [15], and large-scale ex-
periments, e.g., [32, 33].

While today many management tools are available for the
management of computing infrastructures themselves, e.g.,
[7, 14, 26, 35, 37, 38] and they are very useful to the in-
frastructure’s system administrators, there is a scarcity of
significant tools that application developers and managers
can use for managing their applications on such systems [10,
20]. Cluster-management tools allow querying of resource
variables associated directly with the infrastructure, and
have limited applicability to distributed application manage-
ment. Intuitively, the latter is more of an end-to-end man-
agement task while cluster management orthogonally deals
with the underlying cluster.

Distributed application management deals with several
application “instances” (processes, not necessarily replicas)
running on multiple hosts that communicate with each other.
On each host, the application may create and modify certain
objects - these include files (e.g., log files created by a distrib-
uted experiment), variables representing system resources
used by and relevant to the application on the host (e.g.,
CPU utilization, RAM space free, disk space free, band-
width usage in past 5 minutes). In addition, there may be
certain system-wide properties that the application devel-
oper may want to enforce, e.g., a guarantee that at any time,
at least 60 unique hosts are running instances of the applica-
tion. Hence, the distributed application management must
allow for querying these objects and system-wide properties,
as well as for manipulating them.

Such monitoring tasks are an important component of dis-
tributed applications management, pointed out as one of
the grand challenges for the next decade by CRA (Com-
puting Research Association), as well as being the focus of
much work in IBM, HP, Google, etc. [3]. Management of
end-user applications routinely forms 24% to 33% of the
TCO (Total Cost of Ownership) of today’s distributed in-
frastructures such as clusters [27]. This cost for applications
is increasing dramatically as the clusters are becoming geo-
graphically distributed and new distributed infrastructures
are being created. Further, with the migration of services
out from the traditional Internet and into such distributed
infrastructures [17], application monitoring has become an
important problem.

This paper considers a class of monitoring tasks that has
been much-ignored so far. In any of the above distributed

applications, often the application developer wants to in-
stantaneously query the instances (“nodes”) of the distrib-
uted application. This allows an application deployer to
query, at run-time, a variety of system-wide statistics and
information, which are functions of the node-level objects
discussed earlier in this section. For instance, a user exper-
imenting with a peer-to-peer (p2p) multimedia streaming
system [31] may wish to query the current system-wide av-
erage of node CPU utilization, or the current system-wide
histogram of delay between neighboring nodes in the overlay.
This information can be useful for assessing the effectiveness
of different partner selection policies, and for ensuring con-
tinued good performance of streaming.

Another instance of an instant query is an operator of
a p2p DNS system [22] querying the current system-wide
replication degree for a group of domain names - this could
be useful for adjusting replication levels of DNS entries at
run-time, or to diagnose problems with individual domains.
Overall, such an ability to instantly monitor and diagnose
application-related information can help users understand
and tune distributed applications better at run-time, quicken
the response to service outages such as in e-business [11] and
Internet services, as well as enable data center managers
(and their customers) to better understand the application
performance and return on investment (ROI).

MON Approach: We present MON (Management Over-
lay Networks), a system that allows such instant queries to
be executed for large-scale distributed applications. MON’s
basic philosophy is to build control-plane management over-
lays, as depicted in Figure 1. In doing so, MON addresses
the following four concerns:
• Instant Queries via On-demand Overlays: MON ex-
ecutes instant queries at run-time by building on-demand
overlays, with one overlay built per query (by default). The
monitoring queries we consider can be executed by con-
structing tree and DAG-based overlays. This scales ex-
tremely well in systems where the injection rate of com-
mands is low, allowing MON to incur a very low overhead.
MON nodes maintain weakly-consistent membership infor-
mation only, thus avoiding using persistent overlays such as
distributed hash tables [23, 24] or unstructured resource dis-
covery systems [36]. Persistent overlays may be too heavy-
weight for management tasks, since they involve mainte-
nance of invariants and highly-optimized membership man-
agement.
• Scale and Frequent Failures: MON seeks to scale to
applications with several 100’s to 1000’s of nodes, as in data
centers and distributed clusters. On-demand queries com-
plete within a few seconds. The likelihood of a node failure
during that time interval is small; thus, if it occurs, the com-
mand can be re-executed. However, if the overlay is reused
for other commands, we need to address the issue of relia-
bility, as we do next.
• Overlay Reuse and Reliability: We explore the spec-
trum between on-demand overlays and persistent overlays
by considering notions of reliability for the built on-demand
overlay. This would enable the overlay to be used for con-
tinuous execution of a command, as well as for other in-
stant commands on that application. In order to address
reliability, we discuss how the MON system can support
application-specified constraints on both: (1) session reli-
ability, which determines the reliability of an on-demand

Figure 1: Control plane management overlays. Note

D and F are not directly connected in the applica-

tion overlay, but they are in the management over-

lay.

Membership Management

Overlay Construction

Distributed Command Execution

Figure 2: MON Architecture.

overlay as it is maintained for more than one command, as
well as (2) task reliability, which determines the reliability
of a single command on the on-demand overlay. In addition,
we discuss how MON overlays can be built to improve their
coverage and performance.
• Simplicity of Management: MON is built on the
fundamental assumption that management tools should be
simple, and less complicated than the applications on which
they are used. This stems from concerns about “software
bloat” pointed to by Tanenbaum in his SOSP 05 keynote
[25], and the “complexity barrier” pointed to by CRA [3].

MON is currently running on more than 300 nodes on
the PlanetLab, and we pepper our discussion with our ex-
perimental results. We discuss the basic MON system in
Section 2, and analyze its feasibility vs. the persistent ap-
proach in Section 3. We extend MON to address reliability
in Section 4, and conclude with promising directions in Sec-
tion 5.

2. BASIC MON SYSTEM
Figure 2 shows the three basic MON components. Below,

we first describe the management commands input by the
application, then go bottom-up by describing membership,
and finally the overlay construction.

2.1 MON Management Commands
MON views a distributed application as a database table,

with each row representing the current status at one node.
Such a table cannot be maintained at a central location, but
has to be necessarily queried on the fly, somewhat akin to
the use of TinyDB in sensor networks [16]. The attributes
for a tuple in the database include the node’s resource char-
acteristics or log files, all maintained at the node itself. We
view this data model as a starting step to extending MON,
in the future, to historical data at each node, as well as a
SQL-like query syntax (Section 5). MON currently supports
the following operations:

1. select avg(<resource>) [where <condition>]

2. select top k <resource> [where <condition>]

3. select histo(<resource>) [where <condition>]

4. select <resource list> [where <condition>]

5. select grep(<keyword>, <file>)

[where <condition>]

6. select run(<shell command>) [where <condition>]

7. count and depth: number of nodes in, and tree-depth of,
on-demand overlay
8. push <file>

In the above commands, resource could be any node-
level object: this could be a metric that is either host-
based, process-level, or application-defined. Host-based and
process-level metrics include CPU utilization, RAM, disk, etc.
Examples of application-defined metrics include average de-
lay to overlay neighbors (useful for a streaming application),
or the number of DNS entries matching a particular domain
(c.f., DNS application of Section 1). Further, condition can
be any boolean expression over these node-level objects. For
example, one could obtain the list of all nodes which store
DNS entries for a given domain, or which have CPU utiliza-
tions above 50%. Finally, the select grep command allows
the query of distributed log files for certain patterns, and the
select run command allows the execution of arbitrary shell
commands on many nodes simultaneously2.

2.2 Gossip-Based Membership Management
Many p2p systems [23, 24] build overlays by maintaining

certain invariant rules, with membership management tuned
to converge to ensuring these invariants in spite of nodes
joining and leaving the system. We eschew such approaches
in favor of a weakly-consistent overlay approach where each
node maintains soft state. This allows us to avoid maintain-
ing up-to-date global membership information.

For this purpose, we use a gossip-style protocol, similar
to [28, 29], for lightweight distributed membership manage-
ment. Specifically, each MON node maintains a partial list
of m other nodes currently in the system, called a partial
view. A partial view has a fixed size, and may consist of
some random entries as well as some close-by nodes (in the
network). Well-known results [6] show that in a system of N

nodes, m = Ω(log(N)) random entries at each node suffice
to ensure connectivity in the overlay with high probability.

Partial views are updated periodically in a lazy manner -
periodically (once every round, where round length is fixed
at all nodes), a node picks a random target from its partial
view, and exchanges some random membership entries with
the target. To quickly remove failed nodes and maintain
the freshness of membership entries, we associate an age
with each entry, which estimates the time since a message
was last received from the corresponding node. For example,
whenever node B receives a gossip message from node A, it
sets the age of A to 0. Later, when B gossips A’s information
to C, it includes the age of A, which is the time since the
entry was created. Instead of timing out entries, new entries
are continuously shuffled in (1 per period), with the oldest
entry being dropped.

MON would work well even if the above membership pro-
tocol is replaced with an alternative such as SCAMP [6],
Cyclon [29], T-MAN [9], or SWIM [4].

2For security reasons, we allow only certain IP addresses to
initiate this command.

2.3 On-demand overlay construction
To execute instant management commands, we build two

kinds of overlay structures: trees and directed acyclic graphs
(DAGs). A tree structure is suited for instant status query,
and a DAG is suited for software push. Most MON opera-
tions use UDP, except for software push, where we use TCP.
Since an overlay is created on-demand, we would like the
construction algorithm to be quick and efficient, involving
minimum startup delay and message overhead. These ba-
sic overlays have only probabilistic coverage of nodes in the
system, i.e., they may exclude some nodes. Later, Section 4
describes how reliability can be specified and implemented
within our basic MON overlays.
Tree Construction: We describe two tree construction
algorithms - random tree construction and a locality-aware
two-stage construction. For random tree construction, a
MON node initiates this on-demand overlay construction
by sending a Session message to k other randomly selected
nodes from its view (membership list). k is called the fanout
of the overlay and is specified inside the Session message.
Each node receiving a Session message for the first time will
respond with a SessionOK message, and becomes a child of
the Session sender. It also randomly picks k nodes from its
partial view, and sends the Session message to these nodes,
just like the initiator. If a node receives a Session message
for a second time, it responds with a Prune message.

The random tree construction algorithm is simple and will
have good coverage (with fanout k = Θ(log(N)) [6]). How-
ever, it is not locality-aware to the underlying network. This
motivates our second algorithm, called two-stage construc-
tion, which attempts to improve the locality of the tree,
while still achieving high coverage. Session messages carry
the number of hops transited, which is set to 0 at initiator,
and incremented at every hop. A first session message re-
ceived with hop number ≤ threshold h participates in the
first stage of the protocol, and it will select children from
among its random view elements. A first session message
received with hop number > h will participate in the second
stage, selecting children from among its nearby-neighbors in
the underlying network. For this stage, if not enough view
elements exist for selection, random view entries are used.

Intuitively, the two stage algorithm “seeds” different parts
of the network with the session message in the first stage,
and covers these individual localities in the second stage.
If h is limited to o(log(N)), then the first stage contains
a sub-linear (in N) number of messages, while most of the
messages are sent over low-latency high-bandwidth paths in
the underlying network, in the second stage. Finally, notice
that though the view may contain stale entries (since it is
weakly-consistent), even 50% stale entries imply that one
would need to try an expected (2 · k) random entries for the
first stage, and O(log(N)) entries for the second stage.

Table 1 compares the performance of the random tree
(with different fanout values) vs. an optimized two-stage
approach (with k = 5) on a PlanetLab slice with 330 nodes.
The numbers, averaged over 200 overlays we created, show
that the two-stage approach achieves 97% coverage with a
latency of a few seconds. The latency CDF of two-stage,
used for the count query, is shown in Figure 3 - this is be-
low 1500ms in 65% cases, and below 2000ms in 97% cases.
DAG construction: The above tree construction algo-
rithms can be modified to create DAGs. Specifically, each
node is assigned a level l, which is similar to the hop number

Table 1: Tree construction performance.
rand5 rand6 rand8 twostage

coverage 314.89 318.64 320.52 321.59
creation time(ms) 3027.21 3035.46 2972.46 2792.03
count time(ms) 1539.19 1512.07 1369.92 1354.79

500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

response time (ms)

pe
rc

en
ta

ge

CDF of count response time for twostage algorithm

Figure 3: CDF of count time for twostage.

in the tree messages described for the two-stage algorithm.
The initiator (root) node is at level 1, and each other node
has a level of 1 more than that of its first parent node. When
a node with set level l receives a second Session message,
it can accept the sender as an additional parent, as long as
its level is smaller than l. This ensures the resulting overlay
contains no loop, and is thus a DAG.

Figure 4 shows that the DAG approach (in a system of
20 nodes) achieves a total bandwidth of 22 MBps, which is
7 times the largest local bandwidth offered by any individual
node. The bandwidth stays between 900 kbps and 1.3 Mpbs,
with an average of 1.1 Mbps. In comparison, the tree overlay
has a bandwidth that is 10% smaller.

3. FEASIBILITY ANALYSIS: ON-DEMAND
VS. PERSISTENT OVERLAYS

In this section, we explore, for monitoring queries, the fea-
sibility of the on-demand overlay approach in comparison to
an approach that uses persistent overlay maintenance tech-
niques. Concretely, we use a back-of-the-envelope analysis
that takes into account the background bandwidth and the
per-query communication overhead, in order to calculate the
query rates for which the on-demand approach consumes less
bandwidth than the persistent approach. Our mathematical
analysis only considers the random tree construction ver-
sion of MON presented in the previous section, and thus it
also bounds the performance for other intelligent approaches
such as twostage. In addition, we will plug in real implemen-
tation numbers from MON into our analysis at the end of
this section.

Consider a persistent overlay where each node spends a
background bandwidth of B Bps to maintain up-to-date
neighbor information. Up-to-date neighbor information im-
plies none of the membership entries at the node are stale,
and thus a query tree of a given fanout k can be constructed
by directly selecting k children from the neighbor list (ac-
cording to an arbitrary selection criterion). Let the cost of
doing so be C Bytes - notice that a higher value of k implies
a proportionally linear increase in the value of C. Further,
note that we are counting only the tree construction cost
here, since once the tree is constructed, the cost for exe-
cuting the actual query remains the same regardless of the

400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

achieved bandwidth (kbps)

pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

CDF of software push bandwidth (20 nodes)

tree
DAG

Figure 4: Software push bandwidth of MON.

method used for tree construction.
Now, let the query rate input to the system be q per sec.

Then, the bandwidth cost of such a persistent overlay ap-
proach for monitoring is:

Bpers = B + q · C (1)

On the other hand, consider an on-demand approach that
maintains an overlay in a weakly-consistent fashion, so that
only a fraction 1

m
th of the bandwidth B is spent on main-

tenance of membership information. With a background
bandwidth cost of B

m
Bps, only a fraction 1

m
of the neighbor

entries at a given node will be up-to-date. When building
the tree for a given query, the random tree construction se-
lects each child by randomly probing entries in the neighbor
list until an alive node is encountered. Combining this as-
sumption and the reduced bandwidth, we conclude that a
node needs to contact an expected m entries before it can
find an alive child. Since this has to be carried out for each
of the k children, the per-query cost becomes (m ·C) Bytes3.
Thus, given a query rate of q per sec, the bandwidth cost of
the on-demand overlay approach for monitoring is:

Bod =
B

m
+ q · m · C (2)

From equations (1) and (2), the on-demand overlay is more
feasible than the persistent overlay when:

Bod < Bpers

B

m
+ q · m · C < B + q · C

q <
B · (m − 1)

m
·

1

C(m − 1)

This gives us the following feasible range for on-demand
overlays:

q <
B

mC
(3)

Feasible Query Rates for our MON Implementation:

In our MON implementation, the size of each gossip message
100 B, and a node sends one such message every 10 sec.
Thus, the background bandwidth consumed by MON is B =
100

10
Bps = 10 Bps. The cost of each message sent to a

prospective child (for the tree construction only) is 50 B,

3Although our analysis appears to ignore latency, our per-
query bandwidth C accounts for it implicitly and numeri-
cally: due to the retrying in recruiting children, a higher per-
query bandwidth implies a proportionally linear increase in
latency.

and the value of fanout k = 4. Thus, the per-query cost
at each node is the cost of sending messages and receiving
aknowledgments from each of these children. This is C =
2 · k × 50B= 400 B.

Plugging in the above numbers into equation (3), we can
derive the threshold query rate at which the on-demand
approach consumes less bandwidth than the persistent ap-
proach, by setting m = 1.01 (note we should have m > 1 in
the derivation). This is:

q <
1

40.4s

Thus, if the application injects monitoring queries at a rate
lower than around once every 40 seconds on average, then
MON is more feasible than the persistent overlay approach.
We believe this is a realistic operation range for MON since
user-injected queries are associated with think-times of at
least several minutes, since it takes at least that much time
for the user to either inspect the results or to formulate a new
query. On the other hand, for automated and continuous
monitoring, if the above query rate limit is insufficient, then
there are two options: (1) either increase the background
bandwidth cost B in order to support a higher query rate,
or (2) use the techniques in the next Section 4 in order to
reuse the on-demand overlays and increase their reliability.

4. RELIABLE ON-DEMAND OVERLAYS
In order to explore the spectrum between on-demand and

persistent overlays, as well as to improve the reliability of
MON, this section describes design decisions that extend
the concept of on-demand overlays to medium-term overlays.
While an on-demand overlay was used only on a short-term
basis, i.e., for a single command, a medium-term overlay
survives for several hundreds of seconds and can be used
for multiple commands and continuous monitoring. This is
especially useful in extending MON to work at query rates
higher than those calculated in the previous section.

However, we wish to do the above without spending any
explicit maintenance bandwidth for the on-demand overlay
that has been constructed. This motivates us to imbue MON
with certain notions of reliability that are provided to the ap-
plication. MON provides applications two co-existing flavors
of reliability: session reliability and task reliability. Session
reliability applies to the overlay itself (which can be used to
execute multiple management commands), while task reli-
ability latter applies to individual management commands.
Each flavor of reliability is specified as a deterministic bound
by the application, e.g., on the number of missing nodes in
the overlay, or in the aggregated result. We describe below
how MON detects violation of these bounds, retries com-
mands if necessary, and how effective this is in PlanetLab.

4.1 Session Reliability
We define session reliability of an on-demand overlay, at

any given time, as the probability that fewer than a number
max drop of nodes are disconnected at that time. The value
of max drop is specified by the application or user at overlay
creation time, e.g., when the first of a series of commands is
injected. This type of reliability is especially a concern for
tree overlays, where failures and lost messages will cause the
number of nodes in the overlay to decrease over time. Thus,
given a value of max drop, the tree overlays of Section 2
have short lifetimes.

init

cur

init

cur

init

cur

init

cur

init

cur

init

cur

init

cur

init

cur

Figure 5: Reliability violation detection for DAG

overlays. cinit and ccur are variables maintained at

each node.

In addressing this, and in keeping with our goal of spend-
ing no maintenance overhead, MON does not attempt to
repair the tree by detecting failures of nodes. Instead, we
focus on: (1) building robust on-demand overlays with good
session reliability; and (2) detection of session reliability vi-
olations (i.e., when more than max drop nodes are discon-
nected), so that the end-user or application can be notified.
This allows the end-user (or application) to decide if a new
overlay should be constructed.

To improve session reliability, even though a tree is used
for aggregation and the command execution, we build a shell
DAG initially, and the tree neighbors are chosen from this
shell DAG. The shell DAG is built with a fanout k′ > k, the
tree’s fanout. Each child only sends its aggregate data to the
“primary parent,” i.e., the first parent from which the over-
lay creation message was received. For other parents, the
child sends an empty data message, which simply informs
the parents that the child has finished command execution.
The advantages of using the shell DAG are twofold: (a) once
constructed, it does not need to be maintained, (b) it can
be used by a node to switch to an alternative parent, should
that node’s primary parent fail.

We briefly describe detection of reliability violation for
trees first, and then for DAGs. For the tree, each node main-
tains two variables: cinit and ccur, which respectively refer
to the initial and current number of nodes in the subtree
rooted at the node. cinit is reported to the parent at over-
lay construction time, and it is not changed thereafter. ccur

is reported to the parent in the refresh ack message, thus it
is continuously aggregated. Whenever a node detects that
cinit−ccur > max drop, it declares a reliability violation and
sends a notification to the initiator node for the overlay. For
this, the root node’s address is carried with the on-demand
overlay creation message, and is remembered by nodes. For
DAG overlays, the scheme works similarly, except that to
avoid duplicate counting, each node only reports these val-
ues to its primary parent. Notice that cinit is initialized only
once at overlay construction time.

Figure 5 shows a DAG overlay. Initially node D reports its
cinit and ccur to its primary parent B. Later, if link (B, D)
fails, B will update its ccur to 1, but its cinit is not changed,
because it means the “initial” number of nodes included.
After the link failure, node D reports its ccur (which is 1) to
the new primary parent C, but it still reports cinit = 0 to
C. Thus, the root node obtains the correct cinit and ccur.

One issue may arise with the above scheme for DAGs.
If a parent failed soon after the cinit value was sent to it
(and before it was implicitly acknowledged to the child via
a message), then the child has no way of knowing whether

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

Session life time of tree overlays

lif
e

tim
e

(s
ec

on
ds

)

max_drop

Figure 6: Session Reliability: Lifetime distribution

plateaus with max drop.

200 400 600 800 1000 1200 1400 1600 1800
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Session reliability of trees and DAGs (max_drop = 5)

time since overlay construction (seconds)

pr
ob

ab
ili

ty
 a

t m
os

t m
ax

_d
ro

p
no

de
s

ha
ve

 d
is

co
nn

ec
te

d

number of parents = 1 (tree)
number of parents = 3
number of parents = 5

Figure 7: Session Reliability since overlay creation.

to report a value of cinit to its other new (secondary) parent
or not. We take a conservative approach to solving this
problem, having the child node always report a value of
cinit = 0 to its new parent. At the root node, if the value of
ccur has been stable for several refresh periods and is greater
than cinit, we set cinit to ccur.
PlanetLab Experiments: Figure 6 shows the effect of dif-
ferent max drop values on a PlanetLab slice of 325 nodes.
The figure shows the min, max, 25th percentile, median and
75th percentile life time for different max drop values. This
plot shows that using max drop = 5 suffices to obtain a me-
dian overlay lifetime of 1000 s (almost 17 minutes). Figure 7
then shows that at max drop = 5, selecting 5 parents in the
shell DAG suffices to provide 85% session reliability up to
1800 seconds after overlay creation.

4.2 Task Reliability
We define task reliability of a management monitoring

command (i.e., a query) as the probability that at most
max missing nodes are missing from the aggregate result.
The value of max missing may be application- or user-
specified at either command initiation time or overlay cre-
ation time (to apply to all commands run on that overlay).
This reliability notion captures the incompleteness of data
returned by a command execution, which may occur due to
failures during the command.

MON detects a task reliability violation as follows. Each
node keeps a number num missing for each query, which
means the number of nodes whose results are missing from
the current data. The num missing is aggregated toward
the root along with the command data. If a node finds that
num missing > max missing, then this is reported to the
initiator node. Additionally, the child may be asked to retry

0 2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

1
task reliability

max_missing

pr
ob

ab
ili

ty
 o

f m
is

si
ng

 <
=

 m
ax

_
m

is
si

ng
 n

od
es

Figure 8: Task Reliability for different max missing.

the command. As a result, a node may be able to receive
some data from nodes that are previously ignored. However,
after several unsuccessful retries (implementation value=4),
MON declares a failed query, sending any queried data to
the initiator node anyway.
PlanetLab Experiments: Figure 8 shows the reliability
of a monitoring query, measured over 2000 queries in a 325
node PlanetLab slice. First, notice that the query completes
perfectly only 72% of the time (see max missing = 0).
However, if the application is willing to tolerate up to 10
missing values (see max missing = 10), then the query can
be completed 96% of the time.

5. SUMMARY AND LOOKING FORWARD
On-demand overlays built on top of weakly-consistent mem-

bership information can be used to execute monitoring and
software push commands quickly (within seconds), scalably
(in systems with 100’s of nodes), and reliably (application-
specified reliability parameters). This is achieved by our
MON system, and we validate our claims via experiments
from a PlanetLab deployment (see our web interface at:
http://cairo.cs.uiuc.edu/projects/mon/).

Our work raises several interesting directions that would
be fruitful to explore. Some of the issues we are looking at
currently include (but are not restricted to) the following:
A. Persistent vs. On-demand: By imbuing MON mem-
bership information with a few deterministic invariants (e.g.,
virtual ring as in Chord), it is possible to improve the re-
liability of on-demand overlays. The challenge is to avoid
high overhead - this appears feasible since invariants are not
mandatory, but only improve coverage and latency.
B. Expressive Queries: Instant queries, continuous
queries, and triggers, can all be specified via an expressive
and complex SQL-like language. This raises the issues of
creating multiple on-demand overlays, and tradeoffs such as
overlay abandonment versus overhauling.
C. Leveraging the Application Overlay: A distrib-
uted application (e.g., a CDN or an experiment) spans its
own overlay. Instead of an application using the MON solely
in a black-box manner as above, by providing upcalls into
the application, MON may be able to utilize (1) the peer
and neighbor information from the application overlay, and
(2) piggyback MON information onto application messages.
This would lead to “zero-overhead” membership mainte-
nance, especially for high-traffic applications.
D. Leveraging Overlapping PlanetLab slices: If over-
lapping PlanetLab slices create on-demand overlays at a
high rate, then partial, cached, and stale membership in-

formation, as well as overlay information (e.g., parents and
children) can be reused from one slice to another. This can
reduce latency and overhead, the tradeoff of cache staleness
versus bandwidth will need to be addressed.

6. REFERENCES
[1] F. Cappello and et al. Grid’5000: A large scale,

reconfigurable, controlable and monitorable Grid
platform. In Proc. GRID, 2005.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream:
High-bandwidth content distribution in a cooperative
environment. In SOSP’03, 2003.

[3] CRA. Grand Research Challenges in Distributed
Systems. http://www.cra.org/reports/gc.systems.pdf.

[4] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable
Weakly-consistent Infection-style process group
Membership protocol. In Proc. IEEE DSN, pages
303–312, 2002.

[5] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing Content Publication with Coral. In
Proc. Usenix/ACM NSDI, 2004.

[6] A. Ganesh, A.-M. Kermarrec, and L. Massoulie.
Peer-to-peer membership management for
gossip-based protocols. IEEE Transactions on
Computers, 52(2):139–149, Feb. 2003.

[7] IBM. The Oceano Project.
http://www.research.ibm.com/oceanoproject/.

[8] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized, peer-to-peer web cache. In Proc. Annual
ACM Symposium on Principles of Distributed
Computing (PODC), 2002.

[9] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay toplogy management. Self-Organising Systems:
ESOA, LNCS 3910:1–15, July 2005.

[10] F. Kaashoek and et al. Report of the NSF workshop
on research challenges in distributed computer systems.
http://www.nsf.gov/cise/cns/geni/workshop report.pdf.

[11] T. Kuegler. The Billion-Dollar Question: The Impact
of Web Site Performance on E-Commerce.

[12] J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. Mon:
On-demand overlays for distributed system
management. In Proc. Usenix WORLDS, 2005.

[13] P. Linga, I. Gupta, and K. Birman. A churn-resistant
peer-to-peer web caching system. In Proc. 1st ACM
Workshop Self-Survivable and Regenerative Systems,
Oct. 2003.

[14] M. Litzkow, M. Livny, and M. Mutka. Condor — a
hunter of idle workstations. In Proc. 8th ICDCS, pages
104–111, 1988.

[15] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client
Behavior and Feed Characteristics of RSS, A
Publish-Subscribe System for Web Micronews. In
Proc. Internet Measurement Conference (IMC), 2005.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TinyDB: An acqusitional query processing
system for sensor networks. ACM TODS, 2005.

[17] NSF. The GENI initiative.
http://www.nsf.gov/cise/geni/.

[18] K. Park and V. S. Pai. Deploying large file transfer on
an http content distribution network. In WORLDS’04,

December 2004.

[19] K. Park, V. S. Pai, L. Peterson, and Z. Wang.
CoDNS: improving DNS performance and reliability
via cooperative lookups. In Proc. 6th Usenix OSDI,
2004.

[20] D. Patterson. A conversation with Jim Gray. ACM
Queue, 1(4), June 2003.

[21] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into
the internet. In HotNets-I, 2002.

[22] V. Ramasubramanian and E. G. Sirer. The design and
implementation of a next generation name service for
the internet. In Proc. ACM SIGCOMM, pages
331–342, 2004.

[23] A. Rowstron and P. Druschel. Pastry: scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. IFIP/ACM
Middleware, 2001.

[24] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc. ACM
SIGCOMM, pages 149–160, 2001.

[25] A. Tanenbaum. Keynote address. ACM Symposium
on Operating Systems Principles (SOSP), 2005.

[26] A. S. Tanenbaum and S. Mullender. An overview of
the amoeba distributed operating system. Operating
Systems Review, 15(3):51–64, July 1981.

[27] TechWise Research Inc. Are some RISC-based clusters
easier to manage than others?
http://h71000.www7.hp.com/openvms/
whitepapers/sm whitepaper.pdf, 2004.

[28] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proc.
Middleware ’98, pages 55–70. Springer, 1998.

[29] S. Voulgaris, D. Gavidia, and M. van Steen.
CYCLON: Inexpensive membership management for
unstructured P2P overlays. Journal of Network and
Systems Management, 13(2):197–217, June 2005.

[30] T. Weiss. Grid computing gets push from Sun, IBM
and Compaq. Computer World, Nov. 2001.

[31] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. DONet: A
Data-Driven Overlay Network for Efficient Live Media
Streaming. In IEEE INFOCOM’05, Miami, FL, 2005.

[32] Intel Outlines Strategy For Making The Internet
Smarter, Safer, More Reliable And Useful.
http://www.intel.com/pressroom/archive/
releases/20040909corp.htm, Sep. 2004.

[33] HP Joins PlanetLab as Major Research and
Technology Backer.
http://www.hp.com/hpinfo/newsroom/
press/2003/030624a.html, Jun. 2004.

[34] CoDeeN content distribution network.
http://codeen.cs.princeton.edu/.

[35] Cooperative Association for Internet Data Analysis.
http://www.caida.org.

[36] The Gnutella protocol specification.
http://www9.limewire.com/.

[37] The Berkeley NOW Project.
http://now.cs.berkeley.edu/.

[38] The Globus Alliance. http://www.globus.org/.

