
c© 2009 Ramsés Vı́ctor Morales

DESIGN OF AVAILABILITY-DEPENDENT DISTRIBUTED SERVICES IN
LARGE-SCALE UNCOOPERATIVE SETTINGS

BY

RAMSÉS VÍCTOR MORALES

B.S., University Santa Maria la Antigua, 1998
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Assistant Professor Indranil Gupta, Chair
Professor Klara Nahrstedt
Professor Bill Sanders
Senior Researcher Anne-Marie Kermarrec, IRISA/INRIA-Rennes

Abstract

Thesis Statement: Availability-dependent global predicates can be efficiently and scalably

realized for a class of distributed services, in spite of specific selfish and colluding behaviors, using

local and decentralized protocols.

Several types of large-scale distributed systems spanning the Internet have to deal with

availability variations among their constituent nodes. In dealing with churn and low availability

nodes, we believe it is important to link the availability of a node to the service the node receives

from the distributed system. In other words, high availability has to be incentivized with better

service. There are two types of requirements for this problem. First, metrics such as message

overhead, CPU usage, memory overhead and latency need to be optimized to achieve scalability

and efficiency. Secondly, in open distributed systems spanning multiple organizations, the

protocols have to tolerate selfish and colluding nodes, i.e., low availability nodes that attempt to

receive better service.

This thesis approaches this problem by explicitly linking each node’s service to its availability,

via the notion of a global predicate. We present a class of novel distributed protocols that achieve a

given availability-dependent global predicate, efficiently and scalably. These protocols execute in a

fully decentralized manner, realizing the global predicates in an emergent fashion. Predicate

satisfaction is resilient to churn, and to selfish and colluding nodes. The eventual goal of the

predicates is to help incentivize nodes to improve their availability in order to get better service.

Our approach includes using random and consistent techniques to build overlays, as well as

probabilistic local actions such as message forwarding, monitoring, and auditing. This combination

of techniques leads to realizing the predicates, and to probabilistic tolerance to failures, both

churn-related as well as from selfish and colluding behaviors.

Concretely, this thesis makes three major contributions that are closely related to each other.

First we present AVMON, the first distributed availability monitoring service. AVMON builds

random and consistent overlays for accurate and decentralized monitoring of the long term

ii

availability of each node. Second, we present AVMEM, the first availability-aware overlay. Nodes

in AVMEM build their membership by using a globally assigned predicate, leveraging our AVMON

work. On top of AVMEM we implement management functions that query nodes based on their

availability — range/threshold multicast and range/threshold anycast. Finally, we present

AVCOL, the first availability-aware network aggregation system that realizes

availability-dependent predicates. The predicates specify the probability that a node’s aggregate

becomes part of the global aggregate, as a function of the node’s availability.

We evaluate our systems through mathematical analysis, and thorough experimentation. We

carry out our experiments using synthetic and real system traces. Our results demonstrate the

probabilistic correctness, scalability, fault-tolerance, and efficiency of our protocols.

iii

To my parents.

iv

Acknowledgments

First I would like to thank my advisor, Indranil Gupta. Indy, thanks for teaching me more than I

thought was humanely possible to learn in one semester, during my first semester at UIUC; for

teaching me the beauty of probabilistic combinatorics and complex systems; for being infinitely

patient; for amusing my free-association cognitive-centers with your analogies; for pushing me to

accomplish things I didn’t know I was capable of; for sharing a couple of beers; for setting the bar

so high, that I’ll never run out of things to improve.

My wife’s encouragement kept me going since the beginning, in particular during the four

years that we had to live in different countries. Thank you Nelda, for helping me achieve my goals.

Many thanks to my PhD committee members, Anne-Marie Kermarrec, Klara Nahrstedt and

William Sanders for their guidance and suggestions that helped shape this thesis.

I’m also very fortunate of having shared these years with great minds and friends in the

Distributed Protocols Research Group. My sincere gratitude goes to Steve Ko, Jay Patel, Brian

Cho, Imranul Hoque, Nathanael Thompson, Dimitrios Psaltoulis, Thadpong Pongthawornkamol

and Charles Yang.

I would also like to thank my co-authors, Sébastien Monnet, Gabriel Antoniu, Brian Cho,

Steve Ko. It was a great experience working with you, and I learned much from it.

Thanks to Jay Patel and Sameer Sundresh for all the brainstorming into how to create the

most awesome high-tech start-up ever. We’ll have to revisit our ideas some day.

Carlos Rodriguez, Dimitri, Jay, thanks for helping me keep a sane mind during our precious

short spans of free time.

Finally, I would like to thank Fernando Lasso de La Vega, Julio Escobar and Azael Barrera,

for all their support in Panamá, and introducing me to the research world.

My PhD research was supported by the Department of Computer Science, University of

Illinois (Urbana-Champaign) and the following grants: NSF CNS 0448246, NSF ITR CMS

0427089, CNRS-INRIA-UIUC Collaboration Grant.

v

Table of Contents

List of Tables . viii

List of Figures . ix

List of Abbreviations . xi

List of Symbols . xii

Chapter 1 Introduction . 1
1.1 Availability in this Thesis . 2
1.2 Our Approach . 2
1.3 Contributions . 4
1.4 Related Research . 6

1.4.1 Measurement and Prediction of Availability 6
1.4.2 Handling Churn . 7
1.4.3 Availability-aware Protocols . 8
1.4.4 Non-cooperative Distributed Systems . 9
1.4.5 Gossiping Overlays . 10

Chapter 2 System Model and Assumptions . 11
2.1 Large-scale Distributed Systems . 11
2.2 Non-cooperative Behavior . 13

Chapter 3 Availability Monitoring . 14
3.1 Motivation . 14
3.2 Problem Statement . 14
3.3 Assumptions and System Model . 15
3.4 Goals . 16
3.5 Discarded Solutions . 17
3.6 Other Related Work . 19
3.7 The AVMON Approach — Overview and Algorithm 20

3.7.1 AVMON Overview . 20
3.7.2 Monitor Selection Scheme — Using Consistent Hashing 20
3.7.3 Monitor Discovery — Composition and Maintenance of the Coarse View . . . 21
3.7.4 Using the Monitoring Overlay . 24
3.7.5 Optimization — Forgetful Pinging . 25

3.8 Analysis: AVMON Performance and Optimal Variants 25
3.8.1 Basic Analysis . 26
3.8.2 Optimal Variants of AVMON . 29
3.8.3 Continuous Monitoring and Resilience to Collusion 31

vi

Chapter 4 Availability-aware Membership . 35
4.1 Motivation . 35
4.2 Problem Statement . 36
4.3 Assumptions and System Model . 37
4.4 Solution . 37
4.5 Discarded Solutions and Other Related Work . 39
4.6 AVMEM Membership Graph Predicates . 39

4.6.1 A Family of Availability-aware AVMEM Predicates 40
4.6.2 Vertical Sub-predicate Possibilities . 42
4.6.3 Horizontal Sub-predicate Possibilities . 43
4.6.4 Analysis of AVMEM Predicates . 44

4.7 AVMEM Maintenance and Management Operations 46
4.7.1 AVMEM Membership Maintenance . 46
4.7.2 Management Operations over AVMEM . 49

Chapter 5 Availability-aware Aggregation . 52
5.1 Motivation . 52
5.2 Problem Statement . 53
5.3 Assumptions and System Model . 54
5.4 Solution . 55
5.5 Related Work . 56
5.6 Probabilistic Aggregation in AVCOL Trees . 57
5.7 AVCOL Tree Construction . 58

5.7.1 Child Selection Approach . 59
5.7.2 Parent Selection Approach . 63

5.8 Auditing and Discovery . 65
5.8.1 Per-aggregation Auditing . 66
5.8.2 Discovering Valid Children/Parents . 68
5.8.3 Periodic Auditing . 69

Chapter 6 Experiments . 71
6.1 AVMON . 72

6.1.1 Effect of Varying System Size in the STAT,SYNTH,SYNTH-BD Models 73
6.1.2 Effect of Varying Coarse View Size in STAT Model 76
6.1.3 Effect of PlanetLab Traces, Overnet Traces, and a High-churn Model 77
6.1.4 Forgetful Pinging, Optimizations . 78
6.1.5 Overreporting and Collusion . 80
6.1.6 Conclusion . 82

6.2 AVMEM . 82
6.2.1 Microbenchmarks: AVMEM Overlay Properties 82
6.2.2 Management Operations over AVMEM . 85
6.2.3 Conclusion . 88

6.3 AVCOL . 88
6.3.1 Node Coverage . 89
6.3.2 Satisfying Aggregation Predicates . 90
6.3.3 Effect of Colluding Nodes . 91
6.3.4 Selfish Nodes Using Multiple Parents . 91
6.3.5 Bandwidth and Latency . 92
6.3.6 Conclusion . 94

Chapter 7 Conclusions . 95

References . 98

Author’s Biography . 105

vii

List of Tables

3.1 AVMON Variants: Performance of different algorithms for availability monitoring
(cvs=Coarse View Size). 30

viii

List of Figures

1.1 AV*-stack: relationship between AVMON and the availability-aware systems. 4

3.1 Joining (and Rejoining) Sub-Protocol for Nodes. 23
3.2 Coarse Membership and Monitor Discovery Sub-Protocol. 23

4.1 AVMEM membership lists at a node x: Horizontal Sliver and Vertical Sliver. 38
4.2 Discovery Sub-Protocol. 48
4.3 Refresh Sub-Protocol. 48

5.1 Example Aggregation Tree. g(av(node)) is shown for each node, and messages should
be read as {datavalue:probability}, with probabilities multiplicative. Final message
at top shows resultant inclusion probabilities for each node in the global aggregate.
Notice that joining the sink directly as child does not increase inclusion probability. 58

5.2 Child selection (left) and Parent selection (right) example at node x. 59

6.1 Variation of discovery time, when varying system size in the STAT,SYNTH,SYNTH-BD

models. 72
6.2 Average discovery times of first L monitors (L on x-axis) for each node in control

group, for the three synthetic models. 74
6.3 Average computations per time unit (with 1 standard deviation), averaged over all

control group nodes, for STAT,SYNTH,SYNTH-BD models. 75
6.4 CDF of the computational overhead from Figure 6.3. 75
6.5 Average memory entries per node (with 1 standard deviation), over control group,

for STAT, SYNTH, SYNTH-BD. Points perturbed slightly for clarity. 76
6.6 CDF of the memory overhead from Figure 6.5. 76
6.7 Average discovery time of first monitors (with 1 standard deviation) vs. cvs on STAT

churn model. 77
6.8 Memory entries vs. cvs, and computations per minute vs. cvs on STAT churn model. 77
6.9 CDF of Discovery time of first monitors, for each of PL and OV traces. 78
6.10 CDF of number of memory entries per node, for each of PL and OV traces. 78
6.11 CDFs for the discovery time of first monitors, compared between two high-churn models. 79
6.12 Average number of memory entries (with 1 standard deviation) for the experiment in

Figure 6.11. 79
6.13 Ratio of estimated availability to actual availability, with and without the forgetful

pinging optimization. 79
6.14 Forgetful pinging reduces useless pings sent to absent nodes. Bars show 1 standard

deviation. 80
6.15 CDF of per-node outgoing bandwidth for the churned STAT model, and the churned

OV model. 81
6.16 Fraction of nodes with above 0.2 error in measured availability, with some nodes

overreporting all T S(.) nodes’ availabilities as 100%. 81
6.17 P S() pollution among colluders. N = 10000, K = 14. 82

ix

6.18 System Snapshot of Online Nodes. There are 442 nodes online at the time of the
snapshot. Each dot in the plot stands for a node. 83

6.19 Horizontal Sliver Scaling: Size of horizontal sliver at a node grows sub-linearly with
total number of nodes within ǫ availability of the node. Standard deviation plotted
symmetrically but no data was negative. 83

6.20 Vertical Sliver Link Distribution: Number of incoming vertical sliver links to an
availability range is uniform ([0,0.1] skewed as it has one node). 83

6.21 Flooding Attack: Fraction of peers that are not currently neighbors that would accept
communications. Measurement averaged across 0.1-wide availability ranges. 84

6.22 Legitimate Rejection Rate: Fraction of nodes that will reject communications from
an AVMEM in-neighbor. Measurement averaged across 0.1-wide availability ranges. 84

6.23 Range Anycast: Hops required to delivery when sending from MID to range [0.85, 0.95]. 86
6.24 Range Anycast under increasingly harsh scenarios: Lower target availability ranges

have lower success rate. 86
6.25 Retried Greedy Anycast in harsh environment: Anycasts sent to target availability

range [0.15, 0.25] from nodes in HIGH. 87
6.26 Retried Greedy Anycast (Random Overlay, instead of AVMEM): Anycasts sent to

target availability range [0.15, 0.25] from nodes in HIGH. 87
6.27 Multicast Latency CDF: Latency of last message delivered for each multicast. 87
6.28 Multicast Spam Ratio CDF: Ratio of number of multicasts received by a node outside

target range, to number of valid nodes in range. 87
6.29 Multicast Reliability CDF: Fraction of nodes inside target range, that received a

multicast. 88
6.30 Fraction of orphan nodes vs K for child selection, without and with adoption. . . . 89
6.31 Probability of inclusion of a node as a function of its availability. Line shows predicate,

and datapoints are per-node. 90
6.32 Ratio of colluding links to non-colluding links as a function of colluder group size. . 90
6.33 Linear global predicate with child selection when 10% (dots) and 50% (crosses) of the

nodes are colluding. 91
6.34 Fraction of greedy nodes caught by periodic audit, as a function of audit frequency. . 92
6.35 Number of messages per-aggregation. 92
6.36 Bandwidth due to availability queries to AVMON. 93
6.37 Latency of Parent Selection (periodic) vs. Child Selection (asynchronous). 93

x

List of Abbreviations

AVCOL Availability-Aware Collection.

AVMEM Availability-Aware Membership.

AVMON Availability Monitoring Overlay.

CDF Cumulative Distribution Function.

DHT Distributed Hash Table.

P2P Peer-to-peer.

PDF Probability Density Function.

w.h.p. With high probability, i.e., P r[event] = 1 − o(1).

w.r.t. With respect to.

xi

List of Symbols

av(x) Availability of node x.

cdfav(av(x)) Fraction of nodes in the system with avaialability ≤ av(x), § 5.7.

CV (x) Coarse View of node x, § 3.7.3.

cvs Coarse View Size, § 3.7.3.

f() Used to represent an AVMEM sub-predicate, § 4.6.

g() Used to represent AVCOL’s global predicate, § 5.1.

HS(x) Horizontal Sliver of node x, § 4.4.

hs() Used to represent an AVMEM horizontal sliver sub-predicate, § 4.6.1.

K AVMON’s system constant, used to set the expected size of PS and TS, § 3.7.2.

K AVCOL’s system constant, used to set the expected number of valid children (§ 5.7.1)
or the expected number of valid parents (§ 5.7.2).

M(x, y) Generic representation of an AVMEM membership predicate. If the predicate is true,
node y is a neighbor of node x, § 4.2.

N System constant that represents the estimated number of online nodes in the system
(§ 2.1, item 16).

p(a) · da Fraction of nodes with availability in [a − da, a], § 4.6.1.

P S(x) Ping Set of node x, § 3.2.

Tcv AVMON’s Coarse View Protocol Period, § 3.7.3.

TD AVMEM’s Discovery Protocol Period, § 4.7.1.

TM AVMON’s Monitor Protocol Period, § 3.7.4.

TR AVMEM’s Refresh Protocol Period, § 4.7.1.

τ Threshold to start forgetful pinging, § 3.7.5.

T S(x) Target Set of node x, § 3.2.

V S(x) Vertical Sliver of node x, § 4.4.

vs() Used to represent an AVMEM vertical sliver sub-predicate, § 4.6.1.

xii

Chapter 1

Introduction

The usefulness of the Internet as a tool for business, free speech, science, entertainment, social

networking, etc., has visibly given rise to many new large-scale distributed systems and

applications. These systems contain many thousands of online users and hosts. Examples include

peer-to-peer (P2P) systems implementing file storage [22, 73, 88], multimedia streaming [15, 60], file

distribution [20], research overlays and Grids [14, 48, 76,103], globally distributed content delivery

networks and publish-subscribe systems [35, 84], data centers with thousands of nodes for

data-intensive computing and cloud computing [1, 9, 25], etc. In spite of the variety visible in this

list, protocols running inside these systems share many common goals, such as being able to scale

with thousands of nodes, and yet perform operations efficiently, i.e., with low bandwidth, response

time, and overhead per client. These protocols include monitoring, aggregation, membership,

querying, etc. — this list comprises the focus of this thesis.

Many of the above systems have to deal with the phenomenon of churn. Churn refers to rapid

and continuous arrival and departure, failure, and birth and death, of nodes in the distributed

system. Churn and low availability nodes can make the functioning of the distributed system

unreliable, unstable, and bandwidth-expensive [13,19,39,66,79,89]. The availability of client nodes

in widely deployed distributed systems varies widely across both time and across nodes. For

instance, in the Overnet P2P system 50% of hosts have a 10-day availability lower than 30% [12],

while average churn rate is 30% per hour. This heterogeneity across space and time is visible even

in Grid applications, e.g., Grid5000 designers report that each machine reboots several tens of

times per day, depending on the applications that are scheduled to run on it [14]. Even clusters for

cloud computing have to deal with dozens of nodes failing per day. Such availability variation has

recently led to the design of many strategies for distributed computing problems that have to deal

with availability, e.g., storage, replication, multicast, etc. [13,19,39,66,78,89]. These strategies aim

to make such distributed systems churn-resistant and churn-adaptive.

Orthogonally, in addition to this heterogeneity, several researchers and industrial companies

1

have pointed out the dire need for monitoring and management of end-user distributed

applications. Jim Gray opined that management was the most difficult problem for any

distributed system [75]. The 2005 NSF report on “Grand Challenges in Distributed Computer

Systems” lists among its primary concerns real-time management, automated monitoring, and

dealing with heterogeneity in distributed systems [29]. Moreover, end-user applications routinely

form 24% to 33% of the TCO (Total Cost of Ownership) of today’s clusters [96].

Finally, it is well-known that P2P and Grid systems (e.g., SETI@Home, Folding@Home, or

spread over multiple institutions) consist of many nodes that are selfish and would like to obtain

maximum benefit from the distributed system, in spite of their low availability. For instance, Adar

and Huberman point out in [6] that as many as 70% of nodes in Gnutella are freeloaders, i.e.,

nodes that take advantage of Gnutella’s file sharing without contributing back to Gnutella. This

uncooperative behavior continues to be a common problem in open distributed systems [20, 32, 62].

The literature contains several distributed protocols that are tolerant to selfish and colluding

behaviors, as well as maliciousness (see Section 1.4.4).

1.1 Availability in this Thesis

Before we continue, we clearly define the term “availability” as used in the remainder of this

thesis. We define availability as the fraction of time that a node is online. For example, a node

that is online each day for six hours has an availability = 6
24 = 0.25. The time-scale at which the

availability is measured is flexible from our point of view, e.g., one availability-aware system may

find it convenient to use the current life-time of the system, another system may find it useful to

define a 5 hour moving window, and yet another system may use multiple weighted time-scales.

1.2 Our Approach

The approach we take in this thesis is to explicitly address the availability variations and the

selfish behavior of the nodes. To do this, we link the availability of the node to the service that the

node receives from the system. This incentivizes each node to have higher availability, in order to

obtain better service. This link between availability and service is implemented using

availability-dependent predicates. The predicates are globally assigned, i.e., they are decided by an

administrator, they are known by all the nodes in the system, and use node availability as input.

Nodes cannot cheat since our protocols tolerate selfish and colluding behavior.

2

That tolerance is in part a consequence of three goals met by our global predicates, along with

the protocols that implementing them: consistency, randomness, verifiability. The result given by

a predicate is consistent, in spite of system changes such as membership. Randomness refers to the

probabilistic behavior of the predicates and protocols. Verifiability means that the result given by

a predicate can be verified by any node in the system, including a node that is not directly affected

by the value given by the predicate. These ideas seem a little abstract, but they will be made

concrete for each of our systems in Chapters 3, 4, and 5.

In addition to the previous goals, the predicates need to be realized scalably and efficiently,

i.e., the protocols that implement their evaluation must be fully decentralized and incur low

overhead. As we’ll see in the following chapters, the global behavior of the predicates is realized in

an emergent fashion resulting from local node interactions. We will also explain how consistency,

randomness and verifiability help in the scalability of the protocols that help realize the predicates.

Beyond Availability. Linking the service that a node receives from the system to a system

level metric — that node’s availability — is an important research contribution, as it improves

churn and allows the creation of novel availability-aware protocols. Nevertheless, the reader might

wonder about a number of issues and a number of possibilities beyond this particular

availability/service link. Some of these are outlined next.

Our approach can be seen as the sub-set of a more general idea — linking the service received

by a node from the system, to that node’s contribution to that system. In our case, of course, we

focus on node-level availability as the contribution, because this contribution decreases churn, and

decreases the overhead related to the maintenance of the system’s invariants.

First, two nodes with the same availability may not necessarily do the same amount of work in

the application layer, e.g., a node with a slow CPU will contribute less computation cycles to the

system. In a similar way, two nodes with the same availability may not necessarily have (or give to

the system) the same bandwidth, thus potentially doing less work.

Second, we are addressing systems where we expect nodes to be online to execute operations

on demand (e.g., multicasting queries or aggregation) or periodically (e.g., aggregation or

monitoring). In a system where operations can be performed in batch by a node, after it comes

back online, the number of operations can be considered as that node’s contribution.

If a contribution monitoring service is developed for the previous cases, systems like AVCOL

and AVMEM can work in the previous situations, by using that contribution monitoring service

3

Figure 1.1: AV*-stack: relationship between AVMON and the availability-aware systems.

instead of AVMON.

Finally, our availability-dependent global predicates are not intended for energy constrained

systems such as sensor networks, or mobile ad hoc networks. This is a consequence of our

approach, i.e., incentivizing nodes to be more available will consume more energy. Nevertheless,

the ideas presented to realize global predicates in a fully decentralized manner could be useful in

these environments, if a metric other than availability is explored.

All these ideas are worth exploring, and are left for future research (see Section 7).

1.3 Contributions

Thesis Statement: Availability-dependent global predicates can be efficiently and scalably

realized for a class of distributed services, in spite of specific selfish and colluding behaviors, using

local and decentralized protocols.

The concrete contributions of this thesis are:

1. AVMON [2,70, 72], the first scalable and efficient availability monitoring overlay. AVMON

builds overlays that help in monitoring of long-term availability histories of hosts, with a

focus on large-scale distributed settings where hosts may be selfish or colluding (but not

malicious). Concretely, we focus on the important problems of selection and discovery of

such an availability monitoring overlay. We motivate six significant goals for these problems

— the first three goals are consistency, verifiability, and randomness, in selecting the

availability monitors of nodes, so as to be probabilistically resilient to selfish and colluding

nodes. The next three goals are discoverability, load-balancing, and scalability in finding

these monitors. AVMON is an availability monitoring overlay that is the first system to

satisfy all the above six requirements. From an algorithmic point of view, we contribute a

range of protocols for discovering the availability monitoring overlay in a scalable and

efficient manner, given any arbitrary monitor selection scheme that is consistent and

4

verifiable. We mathematically analyze the performance of AVMON’s discovery protocols

w.r.t. scalability and discovery time of monitors. Most interestingly, we are able to derive

optimal variants of AVMON, with the aim of minimizing memory, bandwidth, computation,

and discovery time of monitors (or a subset of these metrics). Our analysis indicates that

these optimal variants are also practically feasible. Our experiment results demonstrate that

AVMON would work well in a wide variety of distributed systems.

2. AVMEM [69], the first availability-aware overlay to date. AVMEM is intended for generic

non-cooperative scenarios where nodes may be selfish and may wish to route messages to a

large set of other nodes, especially if the selfish node has low availability. Under this setting,

our concrete contributions are the following: (1) AVMEM allows arbitrary classes of

application-specified predicates to create the membership relationships in the overlay. In

order to avoid selfish nodes from exploiting the system, we focus on predicates that are

random and consistent. In other words, whether a given node y is a neighbor of a given node

x is decided based on a consistent and probabilistic predicate, dependent solely on the

identifiers and availabilities of these two nodes, but without using any external inputs. (2)

AVMEM protocols discover and maintain the overlay spanned by the application-specified

AVMEM predicate in a scalable and fast manner. (3) We use AVMEM to execute important

availability-based management operations, focusing on range-anycast, range-multicast,

threshold-anycast, and threshold-multicast. AVMEM works well in the presence of selfish

nodes, scales to thousands of nodes, and executes each of the targeted operations quickly and

reliably. Our experiments show that AVMEM works well in practical settings.

3. AVCOL [71], the first availability-aware aggregation system. AVCOL uses probabilistic and

gossip-style techniques to provide availability-aware aggregation. AVCOL is the first

aggregation system that: (1) implements any (arbitrary) global predicate that explicitly

specifies any node’s probability of inclusion in the global aggregate, as a mathematical

function of that node’s availability; (2) probabilistically tolerates large numbers of selfish

nodes and large groups of colluders; and (3) scales well with hundreds to thousands of nodes.

AVCOL uses several unique design decisions: per-aggregation tree construction where nodes

are allowed a limited but flexible probabilistic choice of parents or children, probabilistic

aggregation along trees, and auditing of nodes both during aggregation as well as in gossip

style (i.e., periodically). Our evaluation and our mathematical analysis show that AVCOL

satisfies arbitrary predicates, scales well, and withstands a variety of selfish and colluding

5

attacks.

4. Trace-Driven simulation: we perform extensive experimental evaluations of our systems by

using three types of availability traces — synthetic, from PlanetLab, and from a P2P system

(Overnet).

Figure 1.1 shows the relationship between the proposed systems. Both AVMEM and AVCOL

sit on top of AVMON, because they leverage AVMON as a service that provides information on

node availability for each node in the network. The measured node availability is used by AVMEM

and AVCOL to realize their predicates. Notice that the past AVCAST work can also be

implemented on top of AVMON, even though AVCAST defined its own availability monitoring.

Further availability-aware systems would also be implemented atop AVMON. Similarly, all the

availability prediction and availability-dependent systems mentioned in Section 1.4 could use

AVMON to provide them with individual node availability.

1.4 Related Research

In this section we explore existing approaches that deal with churn, node availability variations,

and selfishness. The following discussion presents a sample of the existing work in the literature,

although it is representative, it is not meant to be exhaustive.

1.4.1 Measurement and Prediction of Availability

There are a number of important measurement studies that deal with availability variations in

distributed systems. Bhagwan [12] presents an important study of the availability dynamics in the

Overnet P2P file sharing network. The centralized monitoring tool used in this study crawls the

system to find random nodes, in 20 minute intervals. As nodes have a unique and fixed identifier

in Overnet, independent of their IP address, this study made obsolete all previous similar studies

that used IP address to identify nodes — due to the prevalence of network address translators and

DHCP, nodes can use a different IP address between sessions, leading to availability

under-estimation. A relevant result is that over 20% of the nodes in the system arrive and depart

in the same day — this is high churn.

Stutzbach and Rejaie make a more detailed study of churn in [94]. In their work they monitor

deployed BitTorrent [20, 80], eMule [3] and Gnutella [110] networks. The use of a more

sophisticated node crawler, Cruiser [93], allows them to efficiently measure the whole network in 4

6

to 10 minutes. This, in turn, allowed them to explore more metrics in more detail — metrics that

would not have been reliably measured with 20 minute intervals [12]. Among those metrics they

studied, session-length distribution, inter-arrival distribution, node uptime distribution, node

downtime, and a number of correlations between the metrics. One interesting result is that the

past session length of a node is a good predictor of its future session length. Another relevant

result is that the availability of a node across two consecutive days is highly correlated.

Measurements are useful to understand the dynamic behavior of these systems. Additionally,

they are the first step to be able to predict future node behavior. Mickens et al studied [66] a

number of availability prediction techniques that can be useful in distributed applications —

saturating counter predictors, state based predictors and noise tolerance, and linear predictors.

Mickens et al applied these predictors to real system traces taken from Overnet, Microsoft’s LAN,

and PlanetLab. They find that accurate predictions of future node availability can be achieved.

Furthermore, they show how to use this prediction to create a replication system that saves

bandwidth by placing replicas according to the future availability of the nodes.

The previous availability studies designed special crawlers to determine if nodes are online or

offline, and thus collect availability data. Our AVMON system can certainly be used to collect

availability data of a running P2P system; but, in contrast to their crawlers, an AVMON process

would have to run in each node. Finally, prediction techniques such as those studied by Mickens et

al [66] can be implemented on top of AVMON — notice that Mickens et al assumed the presence

of some reliable availability monitoring system.

1.4.2 Handling Churn

Godfrey [39] studies a number of node replacement strategies used to replace failed nodes, in

particular Random Replacement, and demonstrates how they can improve the reliability of the

system by decreasing its churn. These replacement strategies are availability-dependent.

Similarly to Godfrey’s, Qiao et al [81] propose organizational protocols for loosely-structured

P2P networks, where the expected session time of the nodes is used to organize connections among

the nodes, thus minimizing churn.

Li et al compare four DHTs in [57] — Chord [92], Kelips [41], Tapestry [107] and

Kademlia [65] — to test how well they behave in the face of churn while their basic system

parameters are tuned — parameters such as Chord’s finger stabilization interval, Kelips’s gossiping

interval, Tapestry’s number of backup nodes, Kademlia’s number of parallel searches, among

7

others. They find that with properly tuned parameters all these systems perform well; but,

properly tuning the parameters is a function of the system workload, i.e., churn.

Rhea et al present a number of protocols to minimize churn in a DHT [85]. They explore

proactive and periodic recovery from node failure, TCP-style timeouts in recursive lookup

messages, and global sampling of the network for proximity network selection.

This thesis can improve churn in large-scale systems, due to the proposed global predicates,

that explicitly link a node’s availability and the service that that node receives from the system.

Moreover, with AVMON’s help it is easier to implement systems that require node knowledge such

as a node’s session time.

1.4.3 Availability-aware Protocols

Besides measurement, prediction and designs that directly tackle churn, some systems that deal

with the heterogeneity of node availability have been proposed. Bhagwan et al created Total

Recall [13], a distributed file storage system that relies on availability prediction of its constituent

nodes to decide when to repair missing replicas — the objective of the replica repair mechanism is

to ensure that files have a guaranteed availability. Chun et al present Carbonite [19], a replication

strategy dependent on node availability, whose goal is to ensure the durability (instead of

availability) of the stored objects.

Pongthawornkamol’s AVCAST [77,78, 79] presents availability-dependent gossiping protocols,

where receiving nodes with higher availability will get better message delivery reliability from the

system (compared to nodes with lower availability). AVCAST is the first system that explicitly

links the availability of a node and the service it receives — this thesis can be seen as (1) an

expansion and extension of the AVCAST Master’s thesis to a larger class of distributed computing

problems, and (2) has techniques that are more efficient and scalable. Before AVCAST, some

existing systems implicitly linked the availability of a node and the service received by the node;

while others did not. An example of the former are nodes in Gnutella — the more time a node

spent online, the more it would learn about available files by caching the results of search queries

relayed through it. As for the latter, consider Total Recall, where the availability of the files

inserted by a node are not related to the inserting-node’s availability.

8

1.4.4 Non-cooperative Distributed Systems

Internet-wide distributed systems spanning multiple administrative domains will have to deal with

selfish node behavior, i.e., nodes that deterministically deviate from the protocol in order to

maximize some local utility function. The classical example of selfishness are

freeloaders [6, 20, 32, 62] — nodes that use the services provided by the system, without

contributing their fair share to the system, e.g., nodes that do not share files in file sharing

networks, nodes that do not stream to other nodes in P2P streaming networks.

A popular approach to deal with such behavior is to design protocols that tolerate Byzantine

failures, such as Lamport et al ’s [55], Rabin’s [83], Castro and Liskov’s [16], Yin et al ’s [106].

Unfortunately Byzantine fault tolerance limits scalability, even if randomization is used [17], or if

variants such as Kotla et al ’s Zyzzyva [54] are used, where speculation is exploited to simplify the

replicated state machine. PeerReview [43] detects Byzantine failures using secure logs and

auditing, however it does not specify how to select witnesses safely — our AVMON (Chapter 3)

approach can be used instead to do the selection.

Another interesting approach is the Byzantine/Altruistic/Rational (BAR) fault tolerance

model [7, 56] — altruistic refers to nodes that follow the protocol, and rational nodes are those

that deviate from the protocol to maximize a local function without hurting the system.

Perhaps the best approach to deal with selfish nodes is to provide them with incentives to be

more available, behave altruistically, and according to the protocol, i.e., to entice them to

contribute their fair share to the system. Feldman et al [32] study how the penalization of

freeloaders improves their contribution. Cohen’s popular BitTorrent used to have a tit-for-tat

mechanism to ensure proper sharing of file chunks among peers [20]. Locher et al show in [62] that

using time-constrained tit-for-tat exchanges in P2P multimedia streaming, incentivizes freeloaders

to become cooperative, as otherwise their streaming would degrade. Feldman et al show in [31]

that exchanging node history, using a game theoretic approach, improves overall P2P system

performance, as selfish and colluding nodes can be identified and then penalized. Damiani et

al [23] built a reputation mechanism using distributed polling to ensure the reliability of shared

resources. Walsh and Sirer [102] created a P2P reputation system based on user voting, to prevent

file pollution in file-sharing networks such as Gnutella — they find that it detects random or

malicious voting, and helps users avoid corrupt files. Another P2P reputation system is Xiong and

Liu [104]’s PeerTrust, whereby building a trust metric that combines trust parameters such as peer

feedback, credibility of feedback and transactions performed by a node, they manage to prevent

9

nodes from distributing malicious content in the P2P network.

However, all the above approaches only implicitly link a node’s availability to the service it gets.

This implicit approach is not comprehensive or predictable across nodes and time, thus it might

not meet the goals of incentivizing nodes to be more available. Additionally, our approach is

incentivizes nodes to be more available by linking a node’s availability to the service it receives

from the system. This link is done using global predicates that are consistent, random and

verifiable — a completely novel approach to the problem.

1.4.5 Gossiping Overlays

Several systems have aimed to build a random membership graph among the nodes of a distributed

system. The SCAMP membership system [38] works by having each joining node initiate several

joining requests which then undergo random walks and probabilistic inclusion in the membership

lists of recipient nodes. The CYCLON system [100] works by having each node periodically

exchange its neighbor lists with a random neighbor, and pick a new neighbor list from the union of

these lists. T-Man [49] is yet another membership protocol that is able to support a generic class

of membership graph predicates, thus allowing arbitrary membership graphs (such as random

ones) to be formed by local node actions. There are important differences between T-Man and our

work. AVMEM, for example, builds graph that are availability-aware. Moreover, the links created

by AVMEM in its graph are consistent, random, and verifiable — T-Man does not meet these

three goals at once. Links in AVMEM are resilient to selfish and colluding behavior, unlike T-Man.

Somewhat like SCAMP, AVMON uses a random spanning tree approach to have joining nodes

inform a subset of other nodes of their presence. AVMON also uses a mechanism similar to (but

simpler than) CYCLON to constantly change the neighbor lists of nodes. While the goal of

CYCLON was to have the neighbor lists change to combat system churn, AVMON’s goal is to also

use the neighbor lists to discover monitoring relationships among node pairs. Although AVMON

has a few design decisions similar to some of the above systems (as noted), none of these systems

addresses availability monitoring as a first class problem. While the constructed membership

graphs are random, the conditions of consistency and verifiability are not addressed by these

systems. Finally, AVMEM and AVCOL are designed to leverage systems like CYCLON or T-Man,

in order to discover nodes in the system; but for simplicity and optimality, they use AVMON’s

partial view of the system.

10

Chapter 2

System Model and Assumptions

In this chapter we outline the system model and assumptions that are common to the design of

our protocols, to our system implementations, and to our mathematical analysis. Where

applicable, we note the differences in the assumptions made between mathematical analysis and

system implementation. In many cases, our assumptions follow literature. In other cases, we

justify what we assume. Chapters 3, 4, and 5 further specify assumptions that are specific to each

one of them. Our assumptions fall into two classes — (1) large-scale distributed systems and (2)

non-cooperative behavior.

2.1 Large-scale Distributed Systems

The scenarios targeted in this thesis include large-scale distributed systems such as PlanetLab [76],

overlays [8], P2P systems [40, 92, 110], grid computing [34] and cloud computing [9]. Motivated by

this, we make the following assumptions.

1. Hosts are heterogeneous.

2. A host can run one or more processes.

3. Each of these processes is called a node in our distributed system.

4. Each node has a unique identifier, e.g., public key, <IP address, port number>, or user id’s

in a P2P system [12].

5. We assume point to point communications. To make our mathematical analysis tractable,

communications are assumed to be over a synchronous network — this means message delays

are bounded. However, our implementations assume that communications happen over an

asynchronous network — a lost message cannot be distinguished from a delayed message.

6. Nodes can communicate reliably with any other node, e.g., using the TCP/IP protocol stack.

11

7. Nodes have an internal clock. Our mathematical analysis assumes, for tractability, that the

clocks are synchronized. However, our implementations assume that clocks are not

synchronized.

8. In our mathematical analysis we assume that messages sent between nodes are not lost or

delayed. Implemented systems assume that messages sent between nodes could be lost or

delayed.

9. A node can suffer a crash-stop failure at any time.

10. We cannot distinguish between a failed node and a slow node [33].

11. Nodes that suffer a crash-stop failure can recover and rejoin the system, or they can stay

failed for the lifespan of the system. We assume that they rejoin the system with the same

identifier.

12. Each node can join or leave the system at any time. System-wide this causes unpredictable

churn. A node that is in the system is said to be online, otherwise it is offline.

13. We do not distinguish between nodes that cleanly leave the system and nodes that fail.

14. Nodes are assumed to have persistent storage that can be retrieved only when the node is

online.

15. We define availability as the fraction of time that a node is online. The time-scale at which

the availability is measured is flexible from our point of view, e.g., one availability aware

system may find it convenient to use the current life-time of the system, while another

system may find it useful to define a 5 hour moving window, while yet another system may

use multiple weighted time-scales.

16. We assume that the number of nodes that are online at a particular point in time, N , is

stable and known to all nodes. In practice, this assumption is justified even under system

churn. For instance, in the Overnet P2P system [12] the online node population size varies

by a factor of 2 over a week and by a factor of 3 over a month. Furthermore, [18, 93] show

that the Gnutella system size varies within a factor of 2 per day and per month, and [46]

shows that in P2P streaming systems the size varies within a factor of 9 per day and per

week. Similar behavior has been reported in [94] for BitTorrent and the Kademlia-based

eMule [3] P2P network. Therefore, our systems and protocols can use a system-wide

12

parameter N , set to an approximate value. Moreover, N can be updated infrequently (e.g.,

once a month) without hurting scalability — the update could use a central trusted server

that assigns version numbers for each N value update, along with a gossiping [26, 42]

protocol to ensure propagation. Alternatively, the estimate size can be determined in a

distributed manner by existing protocols such as [53]. Otherwise, N can be known a priori in

the case of a Grid system or cloud computing cluster. Our experiments evaluate the effect of

this assumption under real life variation of system size.

2.2 Non-cooperative Behavior

We consider a particular subclass of open distributed systems, where nodes exhibit the following

characteristics:

1. A selfish node behavior will want to misrepresent its availability as higher than its real value,

in order to obtain better service from the distributed protocol.

2. Selfish nodes may collude in groups. A colluding node will extend its selfish behavior to also

benefit other nodes in its colluder group. The number of colluding nodes is fixed. Colluding

relationships are already present before the system starts running, and nodes are not

compromised thereafter. The specific nature of the collusion is explained in Chapters 3, 4, 5.

3. A node that is selfish and has low availability will try to receive the system services that are

available to high availability nodes, without actually improving its availability.

4. Nodes have unique identifiers and cannot spoof messages, otherwise a Sybil attack [27] would

be unavoidable.

5. Nodes do not behave in Byzantine or rational manners [7, 16]. Instead, our selfish and

colluding behavior is a subset of rational and Byzantine behaviors. We chose not to directly

address these general failure models, because they would imply sacrifice of scalability (this

makes great sense since BFT protocols are not scalable).

13

Chapter 3

Availability Monitoring

3.1 Motivation

In order to support availability-dependent predicates in distributed services, one needs to

necessarily rely on the presence of an underlying availability monitoring service. This is the focus

of this chapter. The high-level goal of an availability monitoring service is to maintain long-term

availability information for each node in the system. While a few availability monitoring solutions

have been proposed in the literature (e.g., [13, 19, 78]), the generic availability monitoring problem

has not been addressed as yet. This thesis is the first to explicitly define goals for the availability

monitoring problem, to address these goals with a general and overlay-independent solution, and

to explore the optimality of discovery protocols for the overlay.

The problem challenge, in the availability monitoring overlay problem, comes from the fact

that nodes may be selfish or colluding. Such nodes are not malicious, but report

higher-than-measured availabilities for themselves and their “friend” nodes (we will elaborate on

this soon). Yet, the benefits of an availability monitoring service that overcomes this challenge, are

numerous and varied. Applications that rely on such a service include availability-based replica

selection [13, 19, 39, 89], availability-based parent selection in overlay multicast trees [39], and

implementation of availability-based reliability predicates for multicast [78]. In fact, Godfrey et al

recently showed in [39] that with detailed availability history about each node in the system, one

can design “smart” node selection strategies for replication of a service or a file, and that these

outperform availability-agnostic strategies. Finally, availability histories of nodes can even be used

to predict availability of individual nodes in the future, e.g., as shown in [66].

3.2 Problem Statement

Concretely, this availability monitoring problem consists of two orthogonal sub-problems:

14

I Selection and Discovery of the Availability Monitoring Overlay: for each node x, select and

discover a list of nodes who monitor node x

II Availability History Maintenance: what is the exact mechanism used by a monitor of a given

node x to store x’s availability history.

While several different techniques have been proposed for the sub-problem II, i.e., how a

monitor maintains history (see, e.g., [13, 66]), the solution space for the sub-problem I is relatively

less-explored. In other words, any existing technique for availability history maintenance (e.g.,

raw, aged, recent, etc. [66]) can be used orthogonally with a given availability monitoring overlay.

Thus, our focus in this chapter is only on the more challenging sub-problem I above: of

selection and discovery of the Availability Monitoring Overlay. Formally, this problem can be

stated as follows (following the notation of [78]):

For each node x, select and discover a small subset of nodes to monitor x. Denote this

monitoring set of x as P S(x), called the pinging set of node x. Each of the nodes in

P S(x) is responsible for monitoring node x’s long-term availability history. Similarly,

node x might in turn be asked to monitor the availability of a small set of other nodes

— this is called T S(x), or the target set of x. The T S and P S relationships are

inverses of each other.

3.3 Assumptions and System Model

In this section we elaborate and extend the assumptions and the model presented in Chapter 2, for

the monitoring problem.

1. Recall that a selfish node x will try to manipulate the system in order to make the system

believe that x’s reported availability is higher than x’s actual availability — we call this

availability over-reporting. Such a selfish node could manage to obtain higher reliability from

multicast [39, 78], or cause service outage for systems that rely on high availability

nodes [13, 19, 39, 89]. This makes the design of an availability monitoring service challenging,

and none of the existing solutions in literature appear to solve this problem.

2. Colluders of a selfish node always misreport its availability, attempting to make the

availability seem higher.

15

3. Notice that avoiding availability under-reporting requires tracking nodes’ application activity,

and thus an application-specific solution. Our goal is only application-independent solutions.

4. We say that a node is born if it joins the system for the first time. Nodes may also die, i.e.,

leave the system for good. Deaths are silent and not explicit, i.e., a node may leave or fail for

the last time without specifying it was a death.

5. The persistent storage available at each node used to store availability information about

other monitored nodes.

3.4 Goals

To address all the challenges we have mentioned, we first specify six goals for our problem — later,

Section 3.7 shows how to realize these goals. The first three goals are for the selection of the

pinging set of a node — consistency, verifiability, and randomness. In addition, we also desire

discoverability, i.e., a node should be able to locate its pinging set and target set quickly and easily,

and in a manner that is load-balanced and scalable. These six requirements can be stated

concretely as follows:

1. Consistency: Given two nodes x, y, the relationship of whether or not y ∈ P S(x), should be

consistent, i.e., this relationship should not change due to any factors such as joining and

leaving of nodes in the system, variation of size of the system, etc. This ensures that each

node will always be monitored by a consistent set of other nodes, regardless of whatever else

happens in the system. Consistency is required in order to maintain long-term availability

history of node x at each of its monitors, and to avoid having to transfer such histories upon

node churn. Consistency can also avoid pollution of monitoring node sets with colluders.

Finally, consistency is related to the next important property called Verifiability.

2. Verifiability: Given two nodes x, y, any third node should be able to correctly verify whether

y ∈ P S(x) or not. This is an important requirement as this prevents selfish nodes from

selecting and advertising its colluding nodes as being in its P S(x).

3. Randomness: This requirement stands for uniform randomness, and says that given a node

x, P S(x) should contain other nodes picked uniformly at random: (a) in an identically

distributed fashion, and (b) independently of one another. Condition (a) both reduces the

chances of a node’s colluder being one of its monitors, and helps in load-balancing.

16

Condition (b) reduces the chance that groups of nodes will be correlated in being present

together in several pinging sets. Such correlation can be harmful since a group of colluding

nodes, appearing together in multiple pinging sets, could potentially jeopardize availability

calculation for all these monitored nodes.

4. Discoverability: Any node x should be able to discover its P S(x) and T S(x) quickly.

Further, any other node y should be able to locate at least a constant number of (any) given

node x’s P S(x). This enables protocols using the availability service,

e.g., [13, 19, 39, 66, 78, 89], to gather information about individual nodes’ availability. We do

not consider the problem of aggregating node availability histories.

5. Load Balancing: For discovery of pinging sets, the message overhead, memory overhead, and

computational overhead, should each be uniformly distributed across all nodes.

6. Scalability: For discovery of pinging sets, the per-node message overhead, computational

overhead, and memory overhead should each be low and scalable.

In-Brief Contributions of this Chapter: We present AVMON, the first complete system for

selection and discovery of an availability monitoring overlay, in order to satisfy all the six

properties of consistency, verifiability, randomness, discoverability, load-balance, and scalability.

The two core algorithmic contributions of the current Chapter are: (i) a distributed, efficient,

scalable, and load-balanced algorithm for discovery of monitors according to any consistent and

verifiable selection scheme, and (ii) derivation of optimal variants of this discovery protocol, in

order to optimize different combinations from among the metrics of memory and communication

bandwidth (M), discovery time (D), and computation complexity (C). Specifically, for (ii), we

discover three variants of AVMON that satisfy different optimality conditions —- MD (optimal

w.r.t. M and D), DC (optimal w.r.t. D and C), and MDC (optimal w.r.t. M, D, and C). The

AVMON system uses the consistent hash-based pinging set selection leveraged from [78] — we

describe this briefly and assume it in the rest of the Chapter. The AVMON system itself also

includes practical optimizations for our algorithms in order to address high-churn systems.

3.5 Discarded Solutions

Existing availability monitoring overlay schemes in literature today predominantly adopt one of

the following three approaches — self-reporting, centralized, or DHT-based.

17

1. Self-reporting relies on a node reporting its own availability, i.e., P S(x) = {x}.

2. A centralized approach uses a central availability monitor, i.e., P S(x) = y0, where y0 is a

specific node or a small fixed subset of nodes.

3. A DHT-based approach uses a P2P DHT [87,92] overlay to decide the monitoring set for a

node, e.g., akin to [13, 19, 99].

Each of the above existing schemes has disadvantages, and none of them satisfies all conditions

(1)-(6) we laid down above. Firstly, self-reporting does not follow randomness and thus allows

nodes to potentially lie about their own availability by reporting arbitrarily high values. Secondly,

central monitoring is neither load-balanced, nor scalable. If a central server were used to monitor,

say 1 Million nodes (say once every 10 seconds, with 10 B forward and 10 B reply payloads), the

server’s bandwidth consumption would be 16 Mbps. This is a high bandwidth since it is dedicated

solely to the monitoring process — additionally, node joins, failures, and departures would need to

be communicated to the server correctly. One could potentially address this by using a cluster of

monitoring servers, however unavailability of the cluster (e.g., due to a network outage) would

cause the availability monitoring service to be unavailable too.

These issues can be addressed using a decentralized approach. A DHT-based approach would

typically decide the P S(x) for a node x based on the position of the hash of x in a DHT ring, by

selecting the neighboring K nodes with id’s around the hashed nodeID of x (i.e., a “replica set”

around a hashed value). Unfortunately, this (and other hash-based approaches) does not satisfy

either Consistency or Randomness, and has problems w.r.t. Verifiability. Consistency may be

violated when there is churn, e.g., a newly born node joining very close to the hashed value of x,

changes x’s monitor set. This could cause frequent transfers of node x’s availability history across

its monitors. Randomness is violated because the condition 3(b) above is not satisfied — two

nodes y, z that are in a P S(x) are likely to hash to nearby points on the ring, and thus are likely

to appear together in other pinging sets as well (of other nodes that hash nearby). Finally,

verifiability could be expensive under node churn — birth of new nodes which hash on the ring in

between a previously verified monitor’s hash and x’s hash will require monitors to be updated.

Such overhead is avoided by consistent monitor selection in our new system called AVMON.

18

3.6 Other Related Work

The previous sections discussed existing availability monitoring approaches, and systems that use

such a monitoring service. This section briefly touches on other work that is related to our

approach.

Distributed membership maintenance protocols have been the focus of several researchers. The

goal of these protocols is to have each node maintain a neighbor list, which then defines a

membership graph in the system. SWIM [24] and the gossip-based membership protocol by van

Renesse et al. [98] use probabilistic mechanisms to have each node maintain a complete neighbor

list of all nodes in the system (i.e., a complete membership graph).

Several systems have aimed to build a random membership graph among the nodes of a

distributed system (without attention to consistency or verifiability). The SCAMP membership

system [38] works by having each joining node initiate several joining requests which then undergo

random walks and probabilistic inclusion in the membership lists of recipient nodes. The CYCLON

system [100] works by having each node periodically exchange its neighbor lists with a random

neighbor, and pick a new neighbor list from the union of these lists. T-Man [49] is yet another

membership protocol that is able to support a generic class of membership graph predicates, thus

allowing arbitrary membership graphs (such as random ones) to be formed by local node actions.

Somewhat like SCAMP, AVMON uses a random spanning tree approach to have joining nodes

inform a subset of other nodes of their presence. AVMON also uses a mechanism similar to (but

simpler than) CYCLON to constantly change the neighbor lists of nodes. While the goal of

CYCLON was to have the neighbor lists change to combat system churn, AVMON’s goal is to also

use the neighbor lists to discover monitoring relationships among node pairs. Although AVMON

has a few design decisions similar to some of the above systems (as noted), none of these systems

addresses availability monitoring as a first class problem. While the constructed membership

graphs are random, the conditions of consistency and verifiability are not addressed by these

systems.

Finally, as noted before, the monitoring relationship in AVMON is borrowed from our previous

work [78]. However, AVCAST [78] did not address scalable discovery of monitors (as is the focus of

AVMON). Instead, [78] had each node broadcast (to everyone in the system) whenever it joined

the system — this led to quick discovery, but used a very high message bandwidth. We label this

approach of [78] as Broadcast, and compare it analytically with our new AVMON approaches (see

Table 3.1 in Section 3.8).

19

3.7 The AVMON Approach — Overview and Algorithm

This section first gives a brief overview of the AVMON approach, that implements the six goals of

Section 3.4. We then describe individual components of the AVMON algorithms. Recall that our

problem is to select and discover, for each node x, a set of pinging set nodes P S(x) that will

monitor x’s availability. In addition, node x needs to be informed of nodes in its target set T S(x)

(the inverse of P S(.)) that it needs to monitor. Our goal is to satisfy all the properties (1)-(6)

described in Section 3.2.

3.7.1 AVMON Overview

First, AVMON relies on a hash-based (Section 3.7.2) implementation of the monitoring

relationship. This hash-based function can be executed by any node in the system, and determines

if a given arbitrary pair of nodes x, y is related by y ∈ P S(x) (or vice-versa). We chose a

hash-based implementation because it is consistent, verifiable, and random. Second (Section 3.7.3),

in order to discover any consistent and verifiable monitoring relationships (such as the one in

Section 3.7.2), AVMON maintains and uses a coarse overlay. Each node maintains a fixed-size

neighbor list, called the coarse view, that is a random subset of the remaining nodes in the system.

This coarse overlay is used by nodes to discover monitoring relationships between other pairs of

nodes and inform the relevant nodes of such discovery. The protocol for coarse overlay

maintenance and neighbor discovery is scalable, and load-balanced. Finally (Section 3.7.4), the

P S(.) sets are used to monitor other nodes in a scalable manner, with optimizations.

3.7.2 Monitor Selection Scheme — Using Consistent Hashing

This section describes a consistent, verifiable, and random, scheme that AVMON uses in selecting

when a given node x is a monitor for another given node y. We leverage this scheme from our

previous work [78]. Given a unique public node identifier — e.g., < IP address, portnumber >, or

a public key, or a static node id — for two nodes x and y, in order to determine if x ∈ P S(y), we

use a consistent one-way hash function H with range normalized to real interval [0, 1] (MD-5 or

SHA-1 [28] could be used), as well as two consistent parameters K and N (see Chapter 2,

item 16). Here, K is a small fixed number (typically a constant)

20

Given this, two nodes x, y in AVMON are related as:

y ∈ P S(x) ⇔ H(y, x) ≤ K
N

[Hash-consistent Condition] (3.1)

Here, H(y, x) is a normalized hash of the bit string derived by appending the identifier of x after

the identifier of y. Notice that this relation is not necessarily symmetric, since H(x, y) and H(y, x)

are not correlated.

It is evident that: (1) an expected O(K) nodes will be present in P S(x) for any node x; (2)

this relationship is consistent and verifiable at any third node, as well as random.

3.7.3 Monitor Discovery — Composition and Maintenance of the

Coarse View

While the previous section described a specific consistent monitor selection scheme, this section

aims at discovering monitors according to any arbitrary monitor selection scheme, as long as this

scheme is consistent and verifiable. Such a discovery protocol needs to be efficient, scalable, and

load-balanced.

We enable discovery by having each node maintain a coarse view, a random subset of other

nodes in the system. This coarse view is used to discover monitors for other nodes. Although the

discovery protocol described below is generic, for concreteness we will assume the hash-based

monitor selection from Section 3.7.2.

Each node x maintains a set of neighbors in its coarse view, denoted as CV (x). The size of

each node’s coarse view is limited to a maximal cvs entries. In order to maintain randomness of

the coarse view at each node, we describe two sub-protocols below: (1) the joining sub-protocol

executed for nodes entering (or re-entering) the system, and (2) the coarse view maintenance and

monitor discovery sub-protocol.

3.7.3.1 Joining Sub-Protocol

Figure 3.1 describes the join sub-protocol. Node x initiates this protocol whenever it either joins

the system freshly (i.e., after being born), or rejoins it. The goal of this protocol is to inform a set

of other nodes (expected number of cvs) about node x, at any point of time. The protocol works

by having x create a JOIN message, specifying its own id (x), and an integer weight (values of

which are detailed in the next paragraph). This JOIN message is sent to a random node to start

21

with (provided either by the system’s introducer node, or from the old CV (x) if x is rejoining).

When a node y receives such a JOIN message with a non-zero weight c, it first checks if x is

already present in CV (y), or if |CV (y)| = cvs. If neither is true, y includes x in its CV , and

decrements the weight value c of the JOIN. In any case, y finally forwards two JOIN messages

with weights set to (⌊ c
2⌋) and (⌈ c

2⌉) respectively, each to a random node from its CV (y). This

ensures that JOIN message weights are conserved.

The goal of this protocol is to have an expected cvs other nodes include given node x in their

coarse views, by creating a random spanning graph with the requisite number of internal and leaf

nodes. Thus, the initial weight assigned to the JOIN message by a freshly joining node (being

born) is merely cvs. On the other hand, for a node x that is rejoining the system, this weight is set

to the minimum of cvs, and the time elapsed since the last departure of node x from the system

(time in “protocol periods”, term defined in the next paragraph). This is because, once node x

leaves the system, the protocol described next (in Figure 3.2) ensures that the average rate at

which nodes delete x from their own coarse view is 1 per protocol period. Section 3.8 analyzes the

join sub-protocol in detail, showing that it is unlikely for any given node to receive multiple such

JOIN messages, and that the spread time of the JOIN information is O(log(cvs)) w.h.p. (with

high probability).

3.7.3.2 Coarse View Maintenance and Discovery Sub-Protocol

Figure 3.2 shows the pseudocode for maintaining the coarse view and for discovering monitoring

relationships. The maintenance protocol described in the figure is executed at each node once

every Tcv =coarse view protocol period (also known as a “round”) — protocol period durations are

fixed at nodes, but are executed asynchronously across nodes. The sub-protocol at node x has

three tasks: to eliminate from CV (x) nodes that have left the system (and may or may not rejoin),

to shuffle CV (x) with new entries (to keep it random), while discovering monitoring relationships

in the process.

The detailed protocol operations are as follows. Once during each protocol period, node x

picks a single node z uniformly at random from its CV (x), and pings it — an unresponsive node is

removed from the CV . Notice that this pinging is different from the pinging involved in

availability monitoring, which we will discuss in Section 3.7.4. Observe that this implies that a

dead node z (i.e., one that has left for good) will eventually be deleted from all coarse views that

contained z (Theorem 3.8.2).

22

For node x to (re-)join the system:
Pick a random node y;
if (this is the first join of this node)

Send y a JOIN(x, cvs) message (with an integer weight
of cvs);

else

let tdown =
time since node’s latest leave from system

protocol period duration
Send y a JOIN(x, min(cvs, tdown));

Inherit view from this random node;
Participate in the Coarse Membership Protocol (Figure 2);

Each node y receiving a JOIN(x, c) message:
if(c ≤ 0)

discard JOIN message; return;
if (x is not already present in CV (y))

add x to CV (y);
c := c − 1;

Create two messages JOIN(x, ⌊ c
2⌋) and JOIN(x, ⌈ c

2⌉);
Send each of these messages to a randomly selected node from
CV (y);

Figure 3.1: Joining (and Rejoining) Sub-Protocol for Nodes.

At Node x: Periodically (once every protocol period)
Pick a random node z from CV (x) and ping it;
If (z does not respond)

Remove z from CV (x);
Pick a random alive node w from CV (x);
Fetch CV (w) from w;
Check all (u, v) pairs (u 6= v) in

({CV (x) ∪ {x}} × {CV (w) ∪ {x, w}})∪
({CV (w) ∪ {x, w}} × {CV (x) ∪ {x}})

for the hash-consistent condition H(u, v) ≤ K
N ;

for (each pair (u, v) discovered to satisfy the above
hash-consistent condition)
Inform both nodes u and v of the match by sending a
NOTIFY(u, v) message;

CV (x) := Subset of cvs random entries from CV (x) ∪ CV (w);

Figure 3.2: Coarse Membership and Monitor Discovery Sub-Protocol.

23

Since an expected cvs nodes know about any given node z, and the probability of any of these

nodes picking z to ping is 1
cvs per protocol period, the expected number of nodes that delete a

non-alive node z from their coarse view is cvs · 1
cvs = 1 per protocol period. Recall that this

motivated the weights assigned to JOIN messages in Figure 3.1.

During each protocol period, node x also picks a random and alive node w ∈ CV (x), and

fetches its coarse view CV (w). It checks the hash-consistent condition (Section 3.7.2) among all

pairs of nodes (u, v) and (v, u), where u ∈ CV (x) ∪ {x}, v ∈ CV (w) ∪ {x, w}, and u 6= v. Any node

pair (u, v) discovered to satisfy the hash-consistent condition are informed via a NOTIFY message

sent to both. Finally, to maintain randomness of coarse views, node x selects a new coarse view

CV (x) by selecting cvs elements at random from the set CV (x) ∪ CV (w). Observe that the above

protocol implies that at any time at node x, the hash-consistent condition for all pairs within

CV (x) have already been checked.

The average number of coarse view entries pointing to a node x stays stable because an entry

at some other node y’s coarse view, pointing to node x, is equally likely to be either: (1) thrown

away when y fetches someone else’s coarse view, as it is to be (2) replicated at another node z that

fetches y’s coarse view (containing entry x). Section 3.8 will show that (1) if a node and its

potential monitor both stay alive for long enough, they will eventually discover each other

(Theorem 3.8.1); (2) the expected discovery time is small for reasonably small values of cvs.

3.7.4 Using the Monitoring Overlay

This section briefly discusses how the monitoring overlay is used to track availability, how nodes

report their monitors, and an important optimization. Each node x maintains both two lists of

node identifiers: P S(x) and T S(x). Whenever a NOTIFY(u, x) message is received at node x, if

node u is not already present in P S(x), the hash-consistent condition H(u, x) ≤ K
N is re-checked

and if true, node u is included in P S(x) (i.e., node x will be monitored by node u from now on).

Similarly, on receipt of a NOTIFY(x, u) message at node x, the hash-consistent condition is

checked and if true, node u is included in T S(x) (i.e., node x will monitor u’s availability from now

on). This checking avoids the addition of new T S() or P S() entries if spurious NOTIFY messages

are sent by selfish nodes that attempt to recruit invalid monitors.

Each node x periodically sends monitoring pings to each of the nodes in T S(x), and records

this information in its persistent storage. Please note that monitoring pings are different from the

pings in the protocol of Figure 3.1. Monitoring pings are sent out periodically, once every

24

TM =monitoring period. The monitoring period value may be different from the coarse view

protocol period of Figure 3.2. As noted in Section 3.2, the granularity in which measured

availability information about T S(x) nodes is stored at x can be arbitrary, i.e., stored availability

information could either be raw, aged, or recent, etc.

Whenever a node y wants to discover a given node x’s pinging set nodes, it is the burden of

node x to report to node y at least the requested number of its monitoring nodes. For instance,

node y’s policy may be to require x to report at least l (≤ K) monitoring nodes. Node x can then

select any l of its P S(x) nodes to report to y, but cannot lie about these, since y can check the

hash-consistent condition for each reported monitor. Node y can then ask each reported monitor

individually for x’s availability history. Section 3.8.3 analyzes how large K needs to be to support

such an “l out of K” policy.

3.7.5 Optimization — Forgetful Pinging

As nodes die in the distributed system, T S(x) and P S(x) may become filled with garbage nodes

that are actually dead. Since deaths are silent, there is no way of knowing whether an

unresponsive node will rejoin or not, thus these garbage elements cannot be deleted. Instead, we

propose here an optimization to reduce the rate of monitoring pings sent to these unresponsive

nodes, in order to reduce the bandwidth consumption due to dead nodes but without affecting the

precision of availability measurement.

The optimization works as follows at node x — if a node u in T S(x) has been unresponsive for

time t, and t > τ , where τ is a time-threshold, and ts(u) was the last time instance that node u

was pinged successfully by node x, then pick u to ping with probability c·ts(u)
ts(u)+t , per monitoring

protocol period. This is motivated by the need to ping u less frequently if it has been away for

long (denominator), but also to send it at least c
2 pings per monitoring period, from each monitor,

for up to ts(u) time units after it went offline (numerator). Section 6.1 evaluates this optimization.

3.8 Analysis: AVMON Performance and Optimal Variants

We first analyze in Section 3.8.1 the performance of the joining and coarse view maintenance

protocols (from Section 3.7.3), then Section 3.8.2 studies different optimal variants of AVMON

discovery. Section 3.8.3 discusses values for K and the effect of colluding nodes.

25

3.8.1 Basic Analysis

As a precursor to our optimality discussion, this section first analyzes the join protocol and its

dissemination time (Figure 3.1). Then, we derive the discovery time, as well as overheads of

memory, message, and computation, for the AVMON protocol (Figure 3.2). We will assume that

cvs = o(
√

N) in all of the discussion below.

3.8.1.1 Coarse View Analysis — Spread and Dissemination Time of JOIN information

Since the weight of the very first JOIN(x, w) message from a freshly born node x is set to cvs, no

more than cvs nodes can add x to their coarse views right after x’s birth. In addition, when the

node rejoins, it sets the initial weight to make up for the lost number of entries pointing to it

(Figure 3.1), thus keeping the expected number of coarse views pointing to x, at cvs (see

Section 3.7.3).

We analyze the expected dissemination time of a newly born node x’s first JOIN message.

This upper bound also holds for JOINs sent by rejoining nodes. Notice that the spread of

JOIN(x, .) messages, via the random coarse view graph, basically builds a random spanning tree

with cvs total nodes (internal + leaf nodes). This gives a spread time of O(log(cvs)) time for the

JOIN information, unless a large number of nodes receive duplicate JOIN(x,.) messages. In fact,

this “unless” clause is improbable — the probability of a given node receiving a JOIN(x, .)

message in a given round with m forwarding nodes is = 1 − (1 − 2
N)m ≤ 1 − (1 − 2

N)cvs ≃ 2·cvs
N ,

since cvs = o(
√

N). Thus, the expected number of duplicate JOIN-receiving nodes, per protocol

period, is bounded from above by cvs · 2·cvs
N = o(1). In addition, the probability that none of the

cvs nodes receive duplicate JOIN messages is =(1 − 2
N)cvs ≃ (1 − 2·cvs

N), which → 1 as N → ∞.

Thus, with high probability, the JOIN(x, .) spreads quickly to the requisite nodes in time that

is O(log(cvs)). In the worst case, this time is O(log(N)).

3.8.1.2 Discovery time of the Hash-Consistent Condition for a node pair (D)

Firstly, we have the following theorem for eventual discovery of monitors:

Theorem 3.8.1. If (x, y) satisfy the hash-consistent condition, and if nodes x, y stay alive for

long enough in the system, then x will eventually discover y, i.e., y ∈ T S(x) eventually.

This is true because of AVMON’s continuous exchange and shuffling of coarse views. Node y

will see node x an infinite number of times in its coarse view, and thus node y is guaranteed to

26

eventually pick x to exchange coarse views with (Figure 3.2), during which y will check for the

hash-consistent condition with x.

Secondly, we show that discovery is in fact fast. We do so by bounding from above the

expected discovery time, where we are interested only in an asymptotic bound. Given a pair of

nodes x, y, the discovery of the monitoring relationship between x and y occurs at the first

instance when some node (not necessarily either x or y) checks for the hash-consistent condition

with the pairs (x, y) and (y, x). Based on the protocol of Figure 3.2, this check happens only

during the coarse view fetches. Given a node u that fetches the coarse view of another node w, the

probability that x will be present in CV (u) and that y will be present in CV (w), is

=
(cvs

N · cvs
N

)

= cvs2

N2 (we ignore the residual probability of y ∈ CV (u) and x ∈ CV (w), since we are

interested only in asymptotic bounds). Thus, the probability that the (x, y) pair is not checked by

this particular coarse view fetch is ≤
(

1 − cvs2

N2

)

. Now, notice that per protocol period, there are a

total of N such coarse view fetches. Putting all this together, we can derive the probability of the

pair (x, y) being checked by at least one of the fetches in one protocol period as:

Pr [Checked(x, y)] ≥ 1 −
(

1 − cvs2

N2

)N

≥ 1 −





(

1 − cvs2

N2

)
N2

cvs2





cvs2

N

≥ 1 − e
−cvs2

N

In the last inequality, we have used the following inequality: for large M ,
(

1 − 1
M

)M ≤ e−1.

Thus, the expected time to discovery of the monitoring relationship for an arbitrary node pair

(x, y) can be bounded as (in number of protocol periods):

E[D] =
1

Pr[Checked(x, y)]
≤ 1

1 − e
−cvs2

N

Notice that with cvs = o(
√

N) and N → ∞, the exponential series expansion can be used to

simplify this as: E[D]upper bound ≃ N
cvs2 .

In reality, when a node x joins and leaves continuously, the real physical discovery time of a

valid given monitor y of it will be higher than E[D]. Specifically, the discover protocol of AVMON

is a memoryless process. Thus, for a node with a periodic pattern of u uptime seconds followed by

d downtime seconds, the actual discovery time of any given monitor of it is = E[D] · u
u+d .

27

3.8.1.3 Effect of Dead Nodes

From the first three lines of Figure 3.2, we have:

Theorem 3.8.2. A dead node z (i.e., one that has left for good) will eventually be deleted from all

coarse views that contained z.

In addition, a node x with dead node z ∈ CV (x), will delete z w.h.p. (1 − 1
N) within

T ∗
cv = (cvs · log(N)) protocol periods. This is because the probability of deletion of z from CV (x)

in Tcv rounds is = 1 − (1 − 1
cvs)T

cv ≃ (1 − 1
N) for Tcv = T ∗

cv.

Also, we pointed out previously that the death of nodes from the system may cause T S(x) to

contain garbage entries. This is unavoidable since deaths are silent. However, if Nlongterm is the

number of nodes that has been born in the system recently, then the expected size of T S(x) is

K · Nlongterm/N . For minimal-death PlanetLab-like Grid systems, N can be chosen to be the

maximal number of machines, thus E[|T S(x)|] ≤ K. For P2P systems, if Nlongterm is within a

constant factor of N , E[|T S(x)|] is still bounded. Further, our forgetful pinging optimization

(Section 3.7.4) keeps the bandwidth effect of garbage entries referring to dead nodes, very low.

Experiments in Section 6.1 elaborate on the benefits of forgetful pinging.

3.8.1.4 Memory, Message Overhead (M)

The per-node x memory is (|CV (x)| + |P S(x)| + |T S(x)|), or O(cvs + 2K) = O(cvs), since

typically K < cvs. The message overhead at each node, is O(cvs) bytes per protocol period for

coarse view maintenance, and an additional O(K) per monitoring protocol period. The first of

these terms dominates, but stays small. For instance, with cvs = O(4
√

N) (Optimal-MDC — see

Section 3.8.2 below) at N = 1 Million (thus, cvs = 32), protocol period = monitoring period = 1

second, and 8 Bytes per entry, the per-node bandwidth is 256Bps, which is reasonably small.

3.8.1.5 Computational Overhead (C)

This is O(cvs2) per protocol period per node, and arises from the hash-consistency checking in the

coarse view fetches. For N = 1 Million, cvs = 4
√

N (Optimal-MDC — see Section 3.8.2 below), this

turns out to be 1000 hash computations per protocol period. However, this is quite fast — [5]

shows that, with the C++ implementation of MD-5 hash running on a 2.1 GHz P4, WinXP SP 1

machine, 1000 hash computations (each with 12 B) take about 0.375 ms. This is reasonably small,

e.g., protocol period = 10 s implies that hashing consumes 0.003% CPU time.

28

3.8.2 Optimal Variants of AVMON

From the analysis in the previous section, the size of the coarse view (cvs) determines a tradeoff

between memory, communication bandwidth, and computation on the one hand, and discovery

time on the other hand. However, an application may be interested in optimizing only some of

these metrics, and not others. For instance, if AVMON is run within the hosts of an in-house PC

cluster connected over a high bandwidth LAN, we may be interested in minimizing only the

computation (C) and discovery time (D), but not the bandwidth or memory. Alternatively,

AVMON being run in a PlanetLab-like cluster with multicore machines may not care about

computation, but would like to optimize discovery time (D), and memory and bandwidth (M). Of

course, there are applications that would like to optimize all of M,D,C.

Below, we mathematically derive the values of cvs for each of these three optimal variants

(MD, MDC and DC), and then discuss the practicality of these optimal variants (notice that

optimizing MC does not make sense since both M and C increase with cvs).

3.8.2.1 Optimality Analysis 1 — Optimal-MD

We would like to minimize both memory utilization and message bandwidth (M) at each node (cvs

units), as well as the discovery time (D) which is E[D] = 1

1−e
−cvs2

N
. Thus, we want to minimize the

additive function:

f(cvs) = cvs +
1

1 − e
−cvs2

N

≃ cvs +
N

cvs2

Although the units of M and D are different, we use an additive function because we are interested

in minimizing both. Using a constant multiplicative factor with one of the terms, would yield the

same asymptotic result as below. Differentiating f w.r.t. cvs gives us:

d(f(cvs))

d(cvs)
=

(

1 − 2 · N
cvs3

)

= 0 ⇒ cvsOptimal−MD =
3
√

2N

At this optimum, d(f(cvs))2

d2(cvs) = 6·N
cvs4 > 0, thus implying it is a minimum of f . This is the

optimal cvs value to minimize memory, bandwidth, and discovery time. The optimal values of

memory, M and D are each O(3
√

N) (different units in each case).

29

Table 3.1: AVMON Variants: Performance of different algorithms for availability monitoring
(cvs=Coarse View Size).

Approach Memory, B/W per
Round (M)

Expected Discov-
ery Time (D)

Computations per
Round (C)

Broadcast (from [78]) O(N) O(log(N)) (One-Time only)

AVMON, Generic cvs O(cvs)
(

1 − e
−cvs2

N

)−1
O
(

cvs2)

AVMON, cvs = log(N) O(log(N)) N
(log(N))2 O

(

(log(N))2)

(Optimal-MD) AVMON,
cvs = 3

√
N

O
(

3
√

N
)

3
√

N O
(

(N)
2/3
)

(Optimal-MDC,-DC)
AVMON, cvs = 4

√
N

O
(

4
√

N
) √

N O
(√

N
)

3.8.2.2 Optimality Analysis 2 — Optimal-MDC

We would like to minimize both memory utilization and message bandwidth (M) at each node

(cvs units), the discovery time (D): E[D] = 1

1−e
−cvs2

N
, as well as the computational overhead (C).

Thus, we want to minimize the function:

g(cvs) = cvs + cvs2 +
1

1 − e
−cvs2

N

≃ cvs + cvs2 +
N

cvs2

Differentiating g w.r.t. cvs gives us:

d(g(cvs))

d(cvs)
=

(

1 + 2cvs − 2 · N
cvs3

)

= 0

⇒ cvsOptimal−MDC ≃ 4
√

N

Notice that d(g(cvs))2

d2(cvs) = 2 + 6·N
cvs4 > 0 at this optimum, thus implying it is a minimum of g.

This gives a memory and per-round bandwidth of O(4
√

N) each, an expected discovery time of
√

N , and a computational overhead of O(
√

N) (with different units in each case).

3.8.2.3 Optimality Analysis 3 — Optimal-DC

To minimize the discovery time (D) and computation complexity (C), the reader will notice that

the optimizing function can be derived in a manner similar to the function g in the Optimal-MDC

analysis above, and gives an optimal cvsOptimal−DC = 4
√

N .

30

Table 3.1 summarizes the results of our optimality analysis, and also compares the benefits of

the AVMON approach to the näıve Broadcast-based discovery algorithm of [78].

3.8.2.4 In practice — Optimal-MDC AVMON (cvs = 4
√

N)

As mentioned previously, for N = 1 Million, cvs = 4
√

N = 32, and K = log2(N) = 20, the size of

CV (x) is 192B, and the bandwidth is 192B per protocol period. The expected discovery time is

1000 time units, however a given node x discovers one new pinging set node on average at least

every 50 protocol periods. The computational overhead due to hash calculation is also low.

Finally, the probability of partitioning in the coarse view graph is very low — [52] shows that this

probability will be close to zero if cvs = Ω(log(N)), which is true in all the optimal variants above.

3.8.3 Continuous Monitoring and Resilience to Collusion

We now analyze how large K (size of P S()) should be to ensure continuous monitoring of all

nodes. We also derive bounds on pinging set size, and analyze the effect of colluders.

3.8.3.1 Choosing K

The value of K should be chosen so that every given node is continuously monitored w.h.p. This

requires that for every node x in the system, we have that: (a) at least one node present in P S(x)

is up w.h.p. at a given point of time, and (b) |P S(x)| ≥ l(= O(1)) w.h.p.. Condition (b) is

essential in order to support “l out of K” policies described in Section 3.7.4. We show below that

both conditions (a) and (b) can be satisfied w.h.p. by setting

K ≥ log(N) · max
(

2 · log(1
1−a), (l + 1)

)

, where a is the system-wide average node availability.

Firstly, for condition (a), the probability that for node x with |P S(x)| = K, at least one

P S(x) node is up at a given point of time is Pr[|{P S(x)}alive| > 0] =
(

1 − (1 − a)K
)

. If

K = c · log(N), then Pr[|{P S(x)}alive| > 0] = 1 − N
− c

log(1
1−a) . Choosing c such that c

log(1
1−a) ≥ 2,

we calculate the probability that every node’s P S(.) has at least one node alive, as follows:

Pr [∀x : |{P S(x)}alive| > 0] =

(

1 − N
− c

log(1
1−a)

)N

≥
(

1 − N
− c

log(1
1−a)

+1)

≥
(

1 − 1

N

)

→ 1 as N → ∞.

Secondly for the condition (b) above, i.e., for |P S(x)| ≥ l to be true w.h.p. for a constant l, we

31

show that K ≥ (l + 2) · log(N) suffices. This derivation comes about because at

K = (l + 2) · log(N), the probability of a node x having fewer than l nodes in its P S(x) is:

=

l−1
∑

i=1

(

N
i

)

·
(

1 − K
N

)(N−i)

·
(

K
N

)i

≤
[

(

1 − K
N

)N−l+1

·
l−1
∑

i=1

(

N
i

)

]

=

[

(

1 − K
N

)N−l+1

· l · O(N (l−1))

]

≤
[

e−K·(1− l−1
N) · l · O(N (l−1))

]

= O
(

1

N2

)

Thus the probability that every one of the N nodes in the system will have its |P S(.)| ≥ l is:

=

(

1 − O
(

1

N2

))N

≃ 1 − O
(

1

N

)

, → 1 as N → ∞.

Finally, Balls and Bins analysis ([82], Theorem 1) says that throwing O(N · log(N)) balls into

N bins ensures that w.h.p., the maximum number of balls in any bin is O(log(N)). With

O(K) = O(log(N)) monitoring relationships per node in AVMON, we can conclude that the

maximal size of any node’s T S(.) (and thus P S(.)) set is O(log(N)) w.h.p.

3.8.3.2 Resilience to Collusion

The AVMON system avoids nodes misreporting their own availability, but there is the possibility

that a node may be able to recruit colluders to misreport its availability.

First, suppose each node x in the system has C
(

= o
(

N
log(N)

))

colluding nodes, i.e., nodes

willing to misrepresent x’s availability as a value higher than the real value (or as 100%). Given

K = O(log(N)), the probability that no colluders of given node x appear in its P S(x) is:

=

(

1 − K
N

)C

≃
(

1 − CK
N

)

→ 1 as N → ∞.

Thus, it is probabilistically impossible for a node to have its P S(.) set polluted by any colluders.

Second, we analyze the system-wide collusion resilience. If there are D such colluding

relationships system-wide (across any colludee-colluder node pair) and

D = o
(

N
log(N)

)

, K = O(log(N)), then the probability that none of these pairs are valid monitors

32

is:

=

(

1 − K
N

)D

≃
(

1 − DK
N

)

→ 1 as N → ∞.

Thus, none of the colluders will have any effect on the system, w.h.p. The reader may notice

the caveat with this result — the fraction of colluders tolerated (o
(

1
log(N)

)

) decreases with N .

However, the number of colluders tolerated (o
(

N
log(N)

)

) itself grows with N , thus AVMON is able

to withstand larger and larger colluding groups as the system size increases.

3.8.3.3 Resilience to Collusion Under Insecure Identifier

We say that a node’s unique public identifier is secure if it has been assigned and signed by a

trusted third party outside of the system, or if it has been assigned by a trusted introducer node in

a way similar to [91]’s secure bootstraping. On the other hand, if the public identifier is chosen by

the node itself, it may not be secure — if a node y can choose its identifier, y could potentially

lookup an identifier that would let it become a valid member of a particular node’s P S(x), thus

opening the door to bias x’s reported availability by y’s influence.

Consider the following potentially insecure identifier: < IP address, portnumber >, where we

assume that the port number can be chosen by the node before it joins the AVMON overlay —

otherwise, if a system-wide pre-determined port number is used, this identifier would not be

insecure. With such an identifier, a set of colluder nodes could include themselves into a single

node’s pinging set in the following way: Recall that the probability of being a valid member of

P S(x) is K/N , thus a colluder targeting x would have to change its port number N/K times, on

expectation, before it finds an identifier that would make the node a valid member of P S(x) —

e.g., with N = 10, 000 and K = ⌈log2(N)⌉ = 14, the colluder y would attempt, on expectation, 715

different port numbers to be a valid member of P S(x); in other words, there are K/N · 65535 = 91

port numbers that will let y ∈ P S(x).

We can generalize the chances that this attack has to achieve I simultaneous valid P S(.)

insertions. The expected number of ports that will include a colluding node y in I different P S(.)’s

is 65535 · (K
N)I ; in other words, to find a public id that will let y be a valid member of I P S(.)’s, y

would have to change its port number
(N

K

)I
times on expectation. Following the previous

example, N = 10, 000 and K = 14, if the set of colluders want to be valid members of both P S(x)

and P S(z) — i.e., I = 2 — then the expected number of port numbers allowing valid insertions is

(14
10000)2 · 65535 ≪ 1, therefore the attack will fail w.h.p. In conclusion, if ids ·

(K
N

)I
= o(1), where

ids is the number of distinct identifiers a node y can choose, then w.h.p. y cannot simultaneously

33

insert itself into I P S(.)’s.

In summary, if a group of colluders inflating the availability of a single target node can be

problematic to the system, then secure identifiers should be used.

34

Chapter 4

Availability-aware Membership

4.1 Motivation

We would like to provide system administrators and distributed applications, in large-scale

distributed systems, with monitoring and management operations that query nodes based on their

availability. The queries could be done on-demand or continuously. Such operations can be

extremely useful in a variety of large-scale distributed systems. In particular, consider the

following availability-aware management operations:

I Threshold-multicast and Threshold-anycast: Multicast (or anycast) to all nodes with

availability > a, where a ∈ [0, 1), starting from any arbitrary initiator node. This would be

useful for both control and data operations. Control operations include selecting a supernode

in a P2P system with a minimal threshold availability, e.g., akin to [59, 61, 67]. Data

operations include a publish-subscribe or multicast application where packets are sent out to

only nodes above a certain availability, e.g., [78]. Such a multicast application would

incentivize hosts to have higher availability, in order to obtain good reliability.

II Range-multicast and Range-anycast: Multicast (or anycast) to a node with availability

in range [b, b + δ] ⊆ [0, 1], starting from any arbitrary initiator node. This operation can be

used to fingerprint characteristics of the nodes within an availability range, e.g., one could

find out the average bandwidth of nodes below a certain availability, in order to understand

the correlations. In addition, threshold anycast would be useful for selection of replica

locations for a file [13, 19], and of deployment instances for a distributed Grid application [14].

There are many other availability-based management operations not listed above that may be

desired by applications. However, we find that all of the existing overlays in literature are

availability-agnostic while selecting neighbors, thus making it inefficient to run the above classes of

tasks. This observation motivates the need for an availability-aware overlay, that would support

35

availability-based management operations like the ones listed above.

4.2 Problem Statement

A decentralized solution to the availability-aware management problems just described consists of

two components: (I) an overlay among the nodes that helps each node maintain a set of neighbors

(or a membership list), based on the availabilities of these nodes; and (II) operations to execute the

desired management operations by leveraging this overlay. Furthermore, these components require

an availability monitoring service, which can be queried to learn the availability of any node in the

system — for this we use AVMON as presented in Chapter 3.

In building the overlay (component (I) above), we face two challenges. The first arises because

we consider a system model where nodes may be selfish and colluding (see Chapter 2 and

Section 4.3). To address this challenge, we select neighbors of a given node x, based on the

availabilities of the nodes, in a manner that is consistent in spite of changes in the system.

Concretely, given a node x and y, let M(x, y) be a binary variable that denotes whether y is a

valid entry in x’s membership list or not. The global rules for deciding the value of M(x, y) is

called the global predicate. Consistency requires that the value of M(x, y) depend only on the

public identifier (e.g., public key or IP and port) of x, y, and their availabilities av(x), av(y) as

reported by the availability monitoring service. M(x, y) should not be influenced by any external

factors such as other nodes in the system, the system size, or churn in the system (i.e., nodes

joining and leaving the system), etc. Notice that consistency allows both the recipient node y of

any message and a third node to verify the value of M(x, y), regardless of other factors in the

system. This implies that any node x (selfish or otherwise) will be able to send messages only to

other nodes y that are legitimately its neighbors under the consistent predicate, i.e., for which

M(x, y) = 1.

The second challenge arises from the fact that we would like to maintain connectivity in the

overlay as well as support efficient anycast and multicast operations, yet maintain only a small

number of neighbors. A small number of neighbors translates to a lower bandwidth, memory, and

computation overhead. In order to ensure connectivity, scalability, and efficiency, we require the

neighbor selection criteria to be flexible, besides being consistent. Our approach addresses this

challenge by coupling consistency with randomization.

Finally, for component (II) above, we would like to execute anycast and multicast operations

36

in a manner that is fast (i.e., has low latency), scalable (i.e., uses a small number of messages), and

reliable (i.e., manages to complete successfully). We address this challenge by using a variety of

techniques, ranging from flooding and greedy approaches, to gossip and simulated annealing.

4.3 Assumptions and System Model

Besides what was described in Chapter 2 for selfish and colluding behavior, for the membership

problem we consider the following: Nodes (especially those with low availabilities) would like to

have as many other nodes (possibly of high availability) in their own membership list, and to

communicate with them. Further, these selfish nodes may wish to flood the network with copies of

a genuine anycast or multicast request they received. Note that corruption of messages is not

considered here, as it is an orthogonal problem, and how to tolerate it has been previously

addressed [68].

Similar to knowledge of N (Chapter 2, item 16), we assume wide knowledge of the availability

variation probability density function (PDF). In several deployed P2P systems, the availability

PDF has been observed to remain fairly stable from one day to another [94].

Finally, we assume the presence of an availability monitoring service resilient to selfish and

colluding nodes — AVMON (Chapter 3).

4.4 Solution

We present AVMEM which, to the best of our knowledge, is the first proposed availability-aware

membership protocol. AVMEM explicitly leverages availability information of nodes in the system

while selecting neighbors. AVMEM avoids the effects of selfish nodes, and allows efficient

execution of our targeted availability-based management operations. Concretely, each node in

AVMEM maintains two small membership lists: a horizontal sliver (HS) and a vertical sliver

(V S). The horizontal sliver at node x contains a small (random) subset of nodes with availability

“close” to av(x), the availability of x. In contrast the vertical sliver contains a small (random)

subset of nodes from among those with availability that is not in the vicinity of av(x). This is

illustrated in Figure 4.1.

Most importantly, AVMEM supports an arbitrary class of membership predicates that are

random and consistent. This gives an application developer the choice from a family of AVMEM

predicates in order to build the appropriate overlay for their application. The horizontal and

37

Availability

1.0

0.0 Fraction of Nodes 1.0

X

Node x

Vertical sliver at node x

Horizontal sliver at node x

Figure 4.1: AVMEM membership lists at a node x: Horizontal Sliver and Vertical Sliver.

vertical slivers at each node are selected in a randomized and consistent fashion by using the

application-specified predicate. This maintains connectivity, reduces the effect of selfish nodes, and

provides efficiency, scale and reliability for the management operations. For instance, an

application that wishes to build a uniformly random graph would be able to specify this as an

AVMEM predicate. A different application that is likely to have queries sent to only nodes with

availabilities that are near that of the initiating node may prefer to use an AVMEM predicate that

prefers neighbors that are closer-by in the availability space. If one knows the availability

distribution (i.e., PDF or CDF) of the system in question, one could design AVMEM predicates

that have interesting properties, e.g., uniform density of neighbors from any availability range.

We discuss and analyze the family of predicates supported by AVMEM in Section 4.6. Then,

in Section 4.7, we present decentralized AVMEM protocols that achieve scalable and fast discovery

as well as updating of neighbors at each node. Finally, we solve: (1) anycast by using greedy and

simulated-annealing approaches, and (2) multicast by using either a flooding or a gossip-based

approach. We have implemented AVMEM, and we present trace-based simulations in Section 6.2.

Specifically, we use churn traces from the Overnet P2P system [12] to evaluate and compare the

effectiveness the management operations, as well as to microbenchmark the behavior of the

AVMEM overlay itself. Due to the novelty of AVMEM, we prefer to do a thorough and

comprehensive evaluation, rather than creating a strawman system to make comparisons.

38

4.5 Discarded Solutions and Other Related Work

Using a centralized solution to execute the management tasks mentioned is prohibitive because

this would limit the number of simultaneous tasks that can be addressed, especially if these tasks

are for the multicast variants above. It is well-known that such central-database solutions are

rather ineffective at providing real-time answers to instantaneous queries.

In the realm of decentralized solutions, one potential alternative is to leverage P2P ring-based

distributed hash tables (DHTs) such as Pastry [87] or Chord [92]. Such an approach would decide

DHT nodeIDs for nodes based on the node’s availability, rather than a hash of its IP address.

Although this allows management tasks to be resolved via the DHT routing algorithm itself, this

approach causes an unacceptable amount of churn in the DHTs. This churn arises since a nodeID

changes with the node’s availability, besides the fact that nodes are continuously going offline and

coming online. In addition, when using ring-based DHT routing the latency for answering a

range-multicast task is linear in the number of nodes involved, thus making it inefficient.

Another alternative could be P2P solutions that are specially built to support range searches

(or range queries) such as skip trees, graphs and others [10,45, 90, 108], or content-based

publish-subscribe architectures like Sub-2-Sub [101]. In this approach, nodes would be organized

and placed in the overlay based on their current availability, so that anycast and multicast tasks

could be executed by doing a range search on the appropriate availability range. Once again

however, there is a high degree of churn in the system; as nodes’ availabilities change over time,

their positions in the overlay will move around as well. Further, P2P range query structures are

known to be difficult to manipulate under concurrent operations. Note that no system targets

range or threshold operations under a selfish node model.

Finally, we would like to eliminate broadcast-based solutions that flood out the multicast or

anycast to all nodes, since this is inefficient, unscalable, and causes spam to nodes outside the

target range.

4.6 AVMEM Membership Graph Predicates

This section presents a range of predicates for creating random and consistent membership graphs

(or overlays) that are availability-aware. Section 4.7 will describe the discovery of membership

graphs for any such given predicate.

39

Basics and Notation: The availability of a node x, as reported by the availability monitoring

service, is denoted as av(x). Further, the identifier (hash-based or IP-port) of node x is denoted as

id(x). Given two nodes x and y and a membership predicate, M(x, y) is a binary variable that

indicates whether node x (with availability av(x)) should contain node y (with availability av(y))

in its membership list or not.

Due to our principles of randomization and consistency, we use the following framework for

the AVMEM predicate:

M(x, y) =















0 if H(id(x), id(y)) > f (av(x), av(y))

1 if H(id(x), id(y)) ≤ f (av(x), av(y))

(4.1)

Here, H(.) is a (consistent) normalized cryptographic hash function with range [0, 1], used for

its randomization — a normalized version of SHA-1 or MD-5 could be used for this purpose.

Further, f() is a function that takes as input a pair of variables in the range [0, 1], and outputs a

value that lies in [0, 1].

The above predicate means that for given nodes x, y, node x will include y in its membership

list only if the value of H(id(x), id(y)) is less than the value of f(av(x), av(y)). This, and the fact

that H() and f() are globally known, provides consistency since the value of M(x, y), as specified

by equation 4.1, depends only on the identifiers and availabilities of nodes x and y, but not on

anything else in the system. Further, regardless of who evaluates the condition 4.1 above, it will

produce the same result for nodes x, y.

Since we assume that H is a fixed and well-known function, the actual AVMEM predicate is

thus determined by the nature of f . For instance, if f(., .) = p, (p ∈ [0, 1]), then we derive a

random overlay (like SCAMP [36] or CYCLON [100]), but with the additional property of

consistency. In other words, for this example, given two nodes x and y, then M(x, y) = 1

consistently with probability p.

Section 4.6.1 next discusses a family of interesting AVMEM predicates specified under the

framework of equation (4.1). Section 4.6.4 analyzes these predicates.

4.6.1 A Family of Availability-aware AVMEM Predicates

We consider a family of interesting predicates that leverage the known probability distribution

function (PDF) of the availability variation in a given system. Notice that such information can be

collected and analyzed offline by either a crawler or a central server. This information can then be

40

communicated to all nodes at pre-run-time and used consistently. Suppose the PDF of the

availability distribution of the system is specified as p : [0, 1] → [0, 1], i.e., p(a) · da is the fraction of

nodes with availability between a and (a − da), when da → 0. Then, our canonical AVMEM

predicate is specified as:

f(av(x), av(y)) =











hs(av(x), av(y), p(.)) if |av(x) − av(y)| < ǫ. [Hor. Sliver]

vs(av(x), av(y), p(.)) otherwise. [Vertical Sliver]

Recall that a horizontal sliver at node x is defined as a partial list of nodes (called horizontal

sliver neighbors of x in the overlay) with “similar” availability as node x. According to the above

framework, we use an availability range of (±ǫ) around av(x) as candidate nodes for the horizontal

sliver at node x. The value of ǫ is fixed globally, and does not depend on the target ranges of

multicast or anycast operations (or vice-versa). Our experiments find that using ǫ = 0.1 suffices to

give good scalability and reliability for management tasks.

To understand the horizontal sliver concept intuitively, the reader may realize that the

horizontal sliver is somewhat like similar notions in DHTs, i.e., like the “leaf table entries” in

Pastry [87], and the “successors/predecessors” in Chord [92]. However, our setting is different since

those systems deal with hashed nodeIDs, while we are dealing with availability space instead. The

horizontal sliver helps to maintain a connected overlay among nodes with availability around

av(x). Notice that if there are L such nodes, the number of neighbors has to be O(log(L)),

selected uniformly at random, for connectivity to hold with high probability (w.h.p.) [36].

On the other hand, a vertical sliver at node x is defined as a random sample of nodes with

availabilities ranging all the way from 0 to 1. The goal of a vertical sliver is to maintain

connectivity throughout the system via a sufficient number of “long-distance” links (in availability

space) among nodes. This is most akin to the routing table entries in Pastry or Chord

DHTs [87,92]. However, once again, we are dealing with the availability space rather than hashed

nodeIDs, thus our problem setting is quite different.

Below we describe and analyze several AVMEM predicates. Some of these predicates will

assume knowledge of the expected system size (i.e., number of online nodes) as a parameter N (see

Chapter 2, item 16).

While vs() and hs() can be arbitrary, below we first discuss several useful options for selecting

the vertical sliver (i.e., different vertical sub-predicates) and then for selecting the horizontal sliver

41

(i.e., different horizontal sub-predicates).

4.6.2 Vertical Sub-predicate Possibilities

There are several ways of specifying the vertical sliver sub-predicate, i.e., vs(). We discuss three

options below, in increasing order of complexity. We are most interested in the second option —

Logarithmic Vertical Sliver, eq. 4.3 — and analyze it in detail in Section 4.6.4. The first option we

discuss is availability-independent:

vs(av(x), av(y), p(.)) =
c1 · log(N)

N
[Constant Vertical Sliver] (4.2)

Here, c1 is a constant. Recall that N is also constant. This predicate works best in a system

where the availability PDF distribution is a uniform one. However, distributed systems rarely have

homogeneous availability PDFs. This motivates us to consider other predicates that are more

expressive. We derive a very generic vertical sliver sub-predicate:

vs(av(x), av(y), p(.)) = min
(

c1 · log(N)

N · p(av(y))
, 1.0

)

[Logarithmic Vertical Sliver] (4.3)

Section 4.6.4 proves that this predicate ensures a uniformity of coverage of the availability

space (Theorem 4.6.1). In other words, for any availability range [b, b + ǫ] (non-overlapping with

[av(x) − ǫ, av(x) + ǫ]), a node x will have the same expected number of vertical sliver neighbors in

this range, regardless of the value of b.

Finally, one may desire that the density of vertical sliver neighbors in an infinitesimal interval

around a value b becomes smaller and smaller as the absolute value of |b − av(x)| becomes larger

and larger. This would provide an overlay somewhat akin to Pastry routing table entries and

Chord finger table entries, where neighbors are chosen with exponentially increasing distance as

one moves away (there, in the hashed nodeID space). This is realized by the following predicate, as

proved in Corollary 4.6.1 of Section 4.6.4:

vs(av(x), av(y), p(.)) = min
(

c1 · log(N)

N · p(av(y)) · |av(y) − av(x)| , 1.0
)

[Logarithmic-Decreasing Vertical Sliver]

(4.4)

42

4.6.3 Horizontal Sub-predicate Possibilities

Just like for vertical slivers, there are several possible horizontal sliver sub-predicates. We

enumerate two of them below. The second of these predicates — Logarithmic-Constant Horizontal

Sliver, eq. 4.6 — is more interesting, and is analyzed in Section 4.6.4.

The first option is to select a constant fraction of the nodes that lie in the availability range

[av(x) − ǫ, av(x) + ǫ]. The predicate is:

hs(av(x), av(y), p(.)) =
c2 · log(N)

N
[Constant Horizontal Sliver] (4.5)

Here, c2 is a constant. Recall that N is also constant. Although this ensures connectivity

w.h.p. among the nodes in this availability range, it involves too many nodes. Specifically, it is

possible that the range [av(x) − ǫ, av(x) + ǫ] contains much fewer nodes than N . This raises the

possibility that the size of the horizontal sliver at a node x can be reduced. This leads us to the

following predicate:

hs(av(x), av(y), p(.)) = min

(

c2 · log(Nav(x))

Nmin
av(x)

, 1.0

)

[Logarithmic-Constant Horizontal Sliver]

(4.6)

This formulation involves two new parameters — Nav(x) and Nmin
av(x) . First, Nav(x) is the

expected number of online nodes in the availability range [av(x) − ǫ, av(x) + ǫ]. Mathematically,

this can be derived from the PDF of the availability distribution. That is,

Nav(x) = N ·
∫ av(x)+ǫ

av(x)−ǫ p(a) da, where N = the stable system size. Second, Nmin
av(x) is the minimum

number of expected online nodes present in any availability interval of width ǫ that lies wholly

within [av(x) − ǫ, av(x) + ǫ]. This can also be calculated from the PDF of the availability

distribution as follows: Nmin
av(x) = N · min

(

∫ v+ǫ
v p(a) da, [v, v + ǫ] ⊆ [av(x) − ǫ, av(x) + ǫ]

)

.

Note that these values can be easily calculated from a discretized PDF distribution of the

system created from a small sample set of nodes.
∫ v+ǫ

v p(a) da is merely the number of nodes that

have availability lying in this interval, divided by the total number of entries in the discretized

PDF.

Section 4.6.4 shows, via Theorem 4.6.2 Theorem 4.6.3, that the logarithmic constant vertical

sliver sub-predicate maintains connectivity w.h.p. among all nodes lying in the range

[av(x) − ǫ, av(x) + ǫ].

43

4.6.4 Analysis of AVMEM Predicates

In this section, we show that the logarithmic vertical sliver ensures uniformity of coverage in the

availability space (Theorem 4.6.1), the logarithmic-constant horizontal sliver ensures connectivity

among online nodes whose availabilities lie close to each other (Theorem 4.6.2), and that the above

two sliver rules together ensure a small, scalable set of online neighbors for each node in the

system (Theorem 4.6.3).

Theorem 4.6.1. The logarithmic vertical sliver sub-predicate (equation 4.3) ensures that, given a

node x, for any a ∈ [av(x) − ǫ, av(x) + ǫ], the expected number of online nodes with availability in

an (infinitesimally small) interval around a, that are vertical sliver neighbors of node x, does not

depend on the value of a.

Proof. The expected number of online nodes, in the vertical sliver of node x, that have their

availabilities lying in an interval of size da around a, is given as

=p(av(y))da · N · c1·log(N)
N ·p(av(y)) = c1 · log(N) da. This is independent of a.

Corollary 4.6.1. The logarithmic-decreasing vertical sub-predicate (equation 4.4) selects online

neighbors that are at exponentially increasing distances from node x, where distances are measured

in the availability space av(.). (The proof follows along similar lines as Theorem 4.6.1.)

Theorem 4.6.2. The logarithmic-constant horizontal sliver (equation 4.6) sub-predicate ensures

that for a given node x, the sub-overlay consisting of all online nodes with availabilities in the

interval [av(x) − ǫ, av(x) + ǫ] is connected w.h.p.

Proof. For the given node x, define X+ as the set of all online nodes (other than x itself) that

have availability ∈ [av(x), av(x) + ǫ]. Similarly, define X− as the set of all online nodes (other than

x) that have availability ∈ [av(x) − ǫ, av(x)). We will show the proof in three parts: (i) the

sub-overlay graph of nodes in X+ is connected w.h.p., (ii) the sub-overlay graph of nodes in X− is

connected w.h.p., and (iii) x knows at least one node in X+ and at least one node in X− w.h.p.

For any node u, define N+
av(u) and N−

av(u) as the expected number of online nodes lying

respectively in the upper half and lower half of the interval [av(u) − ǫ, av(u) + ǫ]. That is,

N+
av(u) = N ·

∫ av(u)+ǫ
av(u) p(a) da, and N−

av(u) = N ·
∫ av(u)

av(x)−ǫ p(a) da.

We first prove (i), and the proof of (ii) follows analogously. For any node y ∈ X+, notice first

that the interval [av(y) − ǫ, av(y) + ǫ] wholly contains the interval [av(x), av(x) + ǫ]. We use a

well-know result from [36] that in a graph of M nodes, if each node has Ω(log(M)) neighbors that

are selected at random, then the graph is connected w.h.p.

44

Firstly, from the definition of the logarithmic-constant horizontal sliver rule, notice for each

node u that belongs to X+, the probability of y picking u as neighbor is independent of where

av(u) lies. Thus, neighbors are picked uniformly at random. Secondly, we need to show that if

there are M = N+
av(x) nodes in the interval X+, each node in that interval has an expected

Ω(log(M)) online neighbors lying in X+. From the horizontal sliver rule at node y, the expected

number of online nodes from the interval X+ that y has as neighbors is:

=

∫ av(x)+ǫ

av(x)

(

c2 ·
log
(

Nav(y)
)

Nmin
av(y)

· (N · p(a))

)

da

=
c2 · log

(

Nav(y)
)

Nmin
av(y)

· N+
av(x)

≥ c2 · log
(

Nav(y)
)

, (since N+
av(x) ≥ Nmin

av(y))

≥ c2 · log
(

N+
av(x)

)

, (since Nav(y) ≥ N+
av(x))

This completes the proof of (i), and thus (ii). Finally, to prove (iii), notice that we can derive,

based on the same reasoning as above, the probability of x knowing at least one node in the set

X+, and at least one node in X−, as:

≥



1 −
(

1 − c2 · log(N)

N+
av(x)

)N+
av(x)



 ·



1 −
(

1 − c2 · log(N)

N−
av(x)

)N−

av(x)





≥
(

1 − e−c2·log(N)
)

·
(

1 − e−c2·log(N)
)

≥
(

1 − 2

(N)c2

)

Theorem 4.6.3. The logarithmic-constant horizontal sub-predicate (equation 4.6) and the

logarithmic vertical sub-predicate (equation 4.3) , together, ensure that the total expected number of

online neighbors (vertical sliver + horizontal sliver) at a given node x: (i) is at most

(Nav(x) − 1 + c1 · log(N)); and (ii) O(log(N)) if Nmin
av(x) = θ(N).

Proof. Consider a node x. From the discussion of Theorem 4.6.1’s proof, the expected number of

online vertical sliver neighbors at x is:

=

∫ av(x)−ǫ

0
c1 · log(N) da +

∫ 1

av(x)+ǫ
c1 · log(N) da

≤ c1 · log(N)

45

Since the horizontal sliver at node x can contain at most (Nav(x) − 1) nodes, this proves the

part (i) of the theorem.

To show (ii), we use a similar derivation as in the discussion of Theorem 4.6.2’s proof. We can

show that the expected number of online horizontal sliver neighbors of node x is:

≤
∫ av(x)+ǫ

av(x)−ǫ

(

c2 ·
log
(

Nav(x)
)

Nmin
av(y) · ǫ

· (N · p(a))

)

da

= c2 · log
(

Nav(x)
)

Nmin
av(y)

· N

Since Nmin
av(x) = θ(N) and Nav(x) ≤ N , this is O(log(N)).

4.7 AVMEM Maintenance and Management Operations

We first discuss in Section 4.7.1 how nodes discover their AVMEM neighbors according to any

application-specified predicate. Then, Section 4.7.2 describes how the anycast and multicast

operations are executed atop the AVMEM overlay.

4.7.1 AVMEM Membership Maintenance

In this subsection, we first describe the techniques used by AVMEM to discover and maintain

neighbors, i.e., horizontal sliver (HS) and vertical sliver (V S) neighbors, in conformity with the

application-specified AVMEM predicate. We then analyze the optimality of this protocol, and

check whether the memory, bandwidth, and discovery time scale to medium-scale systems.

For discovery and maintenance, we leverage two types of existing services in a black-box

manner. These services are:

1. an availability monitoring service, e.g., centralized, or distributed such as AVMON

(Chapter 3); and

2. a decentralized shuffling partial membership service, e.g., SCAMP [36], CYCLON [100],

T-MAN [49], LOCKSS [63].

An availability monitoring service is defined as one that can be queried for the long-term

availability (e.g., raw, or aged) of any given node. It returns an answer that is reasonably accurate,

and that is reasonably consistent over time. The level of accuracy and consistency of course

depends on the actual availability monitoring protocol itself. The more accurate and consistent it

46

is, the better our AVMEM discovery will perform. For our practical implementation, we leverage

our own availability monitoring service called AVMON (Chapter 3); our experiments show that

this gives good results. Furthermore, AVMON’s overhead is low; for instance, in a system with

2000 nodes, the average node bandwidth is 6.81Bps, average node memory is 52 Bytes, and

average node CPU time is 0.57ms per minute.

A decentralized shuffling membership service allows a node to maintain a random list of some

of the nodes in the system (irrespective of any predicate). This is a weakly consistent list that is

incomplete, and may even contain stale entries. Further, this list is shuffled, i.e., its contents are

continuously changed by the underlying shuffling protocol, so that given a node y and node x that

stay long enough in the system, the entry for node y will eventually appear in the shuffled list at

node x. For our practical implementation, we could have chosen any one of existing systems such

as SCAMP [36], CYCLON [100], T-MAN [49], LOCKSS [63], etc. However, we chose to use our

AVMON implementation’s underlying coarse view, CV , mechanism, which fulfills the requirements

of shuffling membership. This simplifies the overall design of our system, and Section 6.2 shows

this approach performs well in practice.

Given the above two services, the core AVMEM maintenance protocol consists of two

sub-protocols: (I) a Discovery sub-protocol, and (II) a Refresh sub-protocol. The discovery

protocol enables nodes to discover new AVMEM relationships and thus HS and V S neighbors. On

the other hand, the refresh protocol continuously checks whether existing HS and V S neighbors

still satisfy the predicate, and eliminates them if they do not. Each sub-protocol is elaborated

below.

I Discovery Sub-Protocol: At any given node x, the discovery protocol runs periodically,

i.e., once every TD =discovery protocol period time units (typically 1 minute). It iterates

through the entries in the coarse view (i.e., the shuffled membership list). For each entry node

y that is not already in HS(x) ∪ V S(x), it queries the availability monitoring service for the

availability of y, and checks the AVMEM predicate to see if y is a valid HS or V S neighbor of

x. If one of these sub-predicates evaluates to true, then y is included in HS(x) or V S(x), as

appropriate. We will soon analyze the discovery time of this protocol.

II Refresh Sub-protocol: The refresh sub-protocol periodically iterates through the entries

of the HS(x) and V S(x) lists. For each node y in these lists, the sub-protocol queries the

availability monitoring service for y’s current availability, and evaluates the appropriate

AVMEM predicate to see if M(x, y) = 1 or not. If M(x, y) has become 0, then y’s entry is

47

Periodically (once every discovery protocol period, TD)
Let AV (x) = HS(x) ∪ V S(x);
∀u ∈ CV (x)

If u /∈ AV (x)
Request u’s availability,
If M(x, y) = 1

add to AV (x)

Figure 4.2: Discovery Sub-Protocol.

Periodically (once every TR)
let AV (x) = HS(x) ∪ V S(x)
∀y ∈ AV (x)

Request y’s availability
Remove y from AV (x)
Check predicate using y’s and x’s current availability
Add y to AV (x) if the condition is met

Figure 4.3: Refresh Sub-Protocol.

deleted from the appropriate list. It is easy to see that once M(x, y) becomes false, node x

will delete y from its AVMEM membership list within a worst case time of 1 TR =refresh

protocol period. In our implementation, we found that using a refresh period of 20 minutes

suffices for reasonable maintenance of AVMEM predicates. The time and message complexity

of this protocol is analyzed next.

4.7.1.1 Discovery Sub-Protocol — Optimality and Reality Check

The underlying shuffling membership protocols we are considering — SCAMP [36],

CYCLON [100], T-MAN [49], LOCKSS [63], AVMON’s coarse view (Section 3.7.3) — all maintain

a view of size v at each node, where the entries in this view are randomly selected as well as

continuously shuffled. Since our implementation is using AVMON, this v would be the same as

cvs, i.e., AVMON’s “coarse view size”. For AVMEM, we are concerned about the memory,

computation, and bandwidth spent by a node on the one hand, and the discovery time for

neighbors on the other hand. The former three scale linearly with v — memory is of course v,

computation comes from evaluating the predicate periodically for each entry in the view (thus v),

and bandwidth from fetching the availability information for these entries (O(v)).

Discovery time is defined as follows: given a pair of nodes x and y for which M(x, y) = 1, this

is the time until x actually includes y in its HS(x) or V S(x), as appropriate. The discovery time

48

depends on the operation of the underlying shuffling protocol, but fortunately, the fact that there is

constant shuffling tells us that the expected time for a given node y to appear in x’s view is O(N
v).

In order to optimize the above concerns, we thus wish to minimize f(v) = v + N
v .

Differentiating this with v, gives df(v)
dv = 1 − N

v2 = 0, or v = O(
√

N), which is a minimum. This is a

reasonably small number for medium-scale systems. Even for N = 100, 000, v =
√

N ≃ 320. With

20 B per entry and a 1 minute protocol period, the per-node memory is 6.3 KB, and the

bandwidth is 105 Bps. Finally, if the average discovery time is N
v protocol periods, this turns out

to be around 5 hours. This is reasonable given that large-scale Grid computations run for several

days, users survive in P2P systems for months, and PlanetLab nodes are up for years.

4.7.1.2 Refresh Sub-Protocol — Time and Message Complexity

The time complexity equals the number of entries in the horizontal sliver and vertical sliver, i.e.,

O(|HS(x)| + |V S(x)|). This translates to O(log(N)) if, for instance, the logarithmic-constant

horizontal sub-predicate (equation 4.6) and the logarithmic vertical sub-predicate (equation 4.3)

are used (see Theorem 4.6.3).

Likewise, the message complexity depends on the number of entries in both lists. Additionally,

it can depend on the overhead of the underlying availability monitoring service. If we assume (1)

an unoptimized implementation of AVMEM, i.e., with no local caching of previous replies to

availability queries, (2) use of the logarithmic-constant horizontal sub-predicate and the

logarithmic vertical sub-predicate, (3) use of AVMON as the monitoring service, then the message

complexity will be O(log(N) · log(N)): this arises from O(log(N)) number of entries and O(log(N))

messages per entry due to querying AVMON for that entry’s availability (see Chapter 3).

4.7.2 Management Operations over AVMEM

In this section, we describe algorithms for executing the four operations laid out in Section 4.1,

namely: threshold-multicast, threshold-anycast, range-multicast, and range-anycast. For ease of

exposition, we first discuss the two anycast operations, and then the multicast operations.

4.7.2.1 {Threshold, Range} Anycast

We discuss how to route an anycast message intended for range R — a threshold anycast follows a

similar approach, where the range R stretches from the threshold to 1.0. A node x receiving an

anycast message checks to see if it itself lies within range R — if yes, then the anycast is successful

49

and we are done. Each anycast has a TTL (time-to-live) that is decremented by 1 at each virtual

hop. If this TTL value is 0 the message is not forwarded. In any other case the message is

forwarded to another node. We discuss three approaches for forwarding of an anycast below.

• Greedy Forwarding: Node x forwards the anycast to an AVMEM neighbor that lies inside R.

If there is no such neighbor, x selects as the next hop the neighbor whose availability is

closest to r.

• Retried Greedy Forwarding: To increase the reliability for anycasts, we allow nodes to retry a

prospective next-hop if the previous candidate was not responsive (i.e., was found to be

offline). To implement this, we introduce an integer parameter retry, initialized to k at the

initiator. Each forwarded message carries the value of retry = k. This parameter determines

the number of nodes tried using the greedy metric, before dropping the message. Specifically,

each next-hop node is required to acknowledge receipt of the anycast message — failing this,

the previous hop node will decrement the value of retry by 1, and retry its next-best

neighbor, according to the greedy metric (i.e., distance to range target R). The retrying

stops when either retry reaches 0, or there are no more next-best nodes left in the AVMEM

neighbor list of node x.

• Simulated Annealing: An alternative approach is to follow simulated annealing, where the

probability of choosing a random next-hop is high initially (in the first few hops) but

decreases as the anycast proceeds. Specifically, we choose p = e−∆/ttl, where ttl = remaining

time to live, and ∆ = the Euclidean distance between the edge of R and the availability of

the current next-hop under consideration. At each hop, a random next-hop can be selected

(from among the AVMEM neighbors) with probability p, as the list of neighbors is traversed,

otherwise the greedy approach is used (with probability (1 − p)).

A few notes are due about the above approaches. Each of the above three variants naturally

has three flavors, depending on whether only the horizontal sliver neighbors of x are used

(HS-only), only the vertical sliver is used (VS-only), or whether both are used (HS+VS). To be

generic, we referred to the considered set of sliver neighbors as merely “AVMEM neighbors” above.

Thus, we have a total of nine algorithms. Section 6.2 presents data on the most promising variants.

Further, when node x is considering potential next-hops for an anycast, it uses cached values of

availabilities for its neighbors. Typically, these cached values were fetched the last time the refresh

operation was done at node x — this eschews querying the availability service for each forwarded

50

message. Section 6.2 evaluates how much using cached values allows flooding attacks by selfish

nodes.

4.7.2.2 {Threshold, Range} Multicast

For these operations, we once again consider only the range R; the threshold-based variant follows

similarly. The multicast operation follows a two-stage process: an anycast into the range R,

followed by a multicast within the range. The anycast follows the techniques listed above. Hence,

we now discuss multicast only when the initiator is within the range R. Once a node x has

received a multicast message M for a range R (where av(x) ∈ R), it can use one of two approaches

for forwarding it:

• Flooding: Node x forwards the multicast to all its AVMEM neighbors that lie in range R.

Any duplicate copies of the multicast are ignored, and the forwarding is done only once. This

is a highly reliable approach, but is wasteful since each node will receive multiple copies of

the multicast — in the worst case, it may receive one copy from each of its in-neighbors.

• Gossip: To avoid the above overhead, we use a gossip-based approach. Here, node x (after

receiving the multicast) gossips the multicast M . It does so periodically — once every

protocol period seconds, it selects up to fanout of its AVMEM neighbors: (1) whose

availabilities lie within the range R, and (2) to whom x has not already forwarded M . These

neighbors could be selected randomly, but for our implementation we use a deterministic

iteration through the list in order to select gossip targets. The node repeats the above

process for Ng protocol periods after it first receives the multicast. Any duplicate copies of

the multicast it receives are eliminated. We select Ng and fanout so that

(Ng · fanout) = log(N), thus ensuring dissemination w.h.p. via gossip [36].

Just as for anycast, there are three variants for each of the above two approaches — HS-only,

VS-only, and HS+VS, depending on which set of AVMEM neighbors are used for the operations.

This gives us a total of six algorithms. We implemented all these options, and Section 6.2 presents

data from the best ones.

51

Chapter 5

Availability-aware Aggregation

5.1 Motivation

Distributed applications aggregate various kinds of data from large populations of nodes. Resource

utilization information is collected about nodes in order to enable resource discovery for Grid

applications [64, 97]. Statistics of system performance are collected [58, 105], e.g., max, min, top-k,

or bottom-k of CPU utilization. Votes may be collected from nodes, and the majority of answers

used to make a go-no-go decision, e.g., for leader election or replication [63].

The above systems use aggregation within the network in order to scalably and efficiently

compute the aggregate, and deliver it to a sink node. However, in environments where nodes have

varying degrees of contribution to the system, one often desires to collect biased aggregates so that

nodes that have contributed more to the system have a bigger say in the final aggregate. In such a

biased aggregation, for each node, the probability that a global aggregate will include that node’s

own value (henceforth we call this inclusion probability), increases with that node’s contribution to

the system. Notice that the inclusion probability for a node is calculated only across global

aggregates initiated while that node is online. Such biased aggregation can be useful to mitigate

freeloading [6] by ensuring that nodes that contribute comparatively less to the system, influence

the aggregate less. We consider a specific type of contribution, namely node availability.

We allow the inclusion probability of a node’s value to be specified as a mathematical function

of that node’s availability. This relation is the global predicate that the application deployer would

desire applied to all nodes in the system. We denote this global predicate as g, and we focus only

on monotonically non-decreasing predicates. For instance, the deployer might specify a linear

predicate, i.e., the inclusion probability of each node x is g(x) = av(x), where av(x) is that node’s

availability. As another example, a quadratic predicate may be desired, e.g., g(x) = (av(x))2, or a

bimodal predicate, e.g., if (av(x) > 0.5) g(x) = 1.0 else g(x) = 0.0.

Unlike other approaches that implicitly scale node benefit approximately according to its

52

contribution [44, 95], our approach allows us to explicitly specify this relation as a mathematical

function, thus giving a better control over the quality of aggregation. This control enables the use

of the aggregation protocol for various purposes. For instance, one can calculate the average

available disk space throughout the system, by using the linear predicate along with the “average”

aggregation function over the disk space attribute at nodes. If concerns over data durability

increase, then the previous aggregation could use the quadratic predicate, thus resulting in a disk

space measurement more biased towards what’s available at higher-availability nodes. Another

example is using the bimodal (or quadratic) predicate along with the “min” aggregation function

over ids of nodes. This produces a leader election protocol where only high availability nodes can

become leaders. In general the bimodal or quadratic predicate can be used to penalize low

availability nodes — compared to the use of the linear predicate — and thus provide incentive for

them to improve their availability.

5.2 Problem Statement

The problem of using local and distributed actions at nodes to achieve an arbitrary and emergent

global predicate is a challenging one. There is a need to scale to systems with hundreds or

thousands of nodes, as well as to withstand churn, i.e., arrival, departure and failure of nodes.

Further challenges come from the fact that nodes may be selfish and colluding (see Chapter 2, and

Section 2.2). Selfish and colluding behavior can arise from node gaming [86] or multiple

administrative domains (MADs) [7]. This behavior can adversely influence the predicate

satisfaction in any solution to our aggregation problem. For instance, in the above examples,

selfish nodes may end up unfairly biasing the measured average available disk space. A group of

colluders may end up influencing the leader election to always elect one of them as leader

(regardless of their availability).

The desired global predicate, that relates a node x’s availability av(x) to the inclusion

probability for its data in an aggregate, is denoted by the function g : [0, 1] → [0, 1]. We make two

assumptions about g: (1) g is monotonically non-decreasing, i.e., if av(x) > av(y) for two nodes

x, y, then it is true that g(av(x)) ≥ g(av(y)); (2) g(1.0) = 1.0, i.e., a node that is always online will

desire to have its data appear in all aggregates. For instance, this is true at the sink node.

The problem we address is then, informally, as follows:

Given an arbitrary desired global predicate g, design an aggregation protocol so that

53

for each node x, x’s contributed value(s) appears with probability g(av(x)) in the

global aggregates at the sink, calculated only across epochs during which x is online.

5.3 Assumptions and System Model

This section elaborates and extends the assumptions that we make additionally to those in

Chapter 2, for the aggregation problem.

1. In line to the selfish and colluding behavior mentioned in Chapter 2, in this setting a selfish

node takes actions that increases its own inclusion probability, independent of its actual

availability. Moreover, colluding nodes aim to increase their inclusion probabilities,

independent of their actual availabilities.

2. Additionally, these selfish and colluding nodes are not interested in affecting other nodes’

inclusion probabilities (recall from Chapter 2 that we do not consider malicious or Byzantine

behavior). In other words, a node deviates from the specified protocol behavior only when

the deviation improves the inclusion probability of either itself, or some of its colluders.

Thus, selfish nodes may execute local actions, while colluding nodes may use friends, all to

increase their own inclusion probabilities, e.g., by double forwarding of own values. However,

nodes never maliciously modify their own values or partial aggregates. We assume an

arbitrary number of selfish nodes in the system.

3. Aggregations occur in rounds, called epochs. Each epoch is uniquely identified by using the

sink node’s id and a signed epoch number. Epochs could be initiated either (a)

asynchronously, initiated by the sink, or (b) periodically, at synchronized times across all

nodes (e.g., helped by NTP). We support both these options. Epochs do not overlap, and

inter-epoch time intervals are larger than the typical time to finish an aggregation.

4. Each aggregation epoch is associated with a single sink node which desires to calculate the

aggregate. We assume henceforth for simplicity that the same sink node is used in all epochs;

our algorithms work even when the sink differs across epochs. We will also assume that the

sink is (i) always online, i.e., has an availability of 1.0, and (ii) is not selfish or collusive with

any other node. These assumptions are reasonable because we want aggregation anytime,

and at a trusted sink node.

54

5. The aggregation statistic desired by the sink is partially aggregatable within the network,

i.e., the tree is used for in-network aggregation. In other words, akin to [64, 97, 105], we

assume that combining two partial aggregates into another aggregate, does not increase the

size of the message. Some partially aggregatable functions are top-k, bottom-k, max, min,

count, sum, and average (aggregated as sum and count).

6. We assume the presence of an availability monitoring service resilient to selfish and colluding

nodes. This system can be AVMON (Chapter 3), and we elaborate further in Section 5.4.

7. The node availability probability density function (PDF) remains fairly stable across time.

Just like N (item 16 in Chapter 2), this has been shown to be stable in several deployed P2P

systems [93]. Thus, it can be measured and used as a system-wide parameter that would be

updated infrequently (e.g., once a month), without affecting scalability. This measurement

can be done by the availability monitoring service, e.g., AVMON.

5.4 Solution

We present AVCOL, an availability-aware aggregation service that implements arbitrary global

predicates for biased aggregation. AVCOL works in environments where nodes may be selfish or

colluding. AVCOL uses a novel combination of four techniques: (1) building aggregation trees

on-demand, where nodes select parents (or children) based on availability, (2) restricting the choice

of valid parents (or children) based on a consistent condition, (3) probabilistic forwarding of child

data up to parents at each internal tree node, and (4) periodic (i.e., gossip-style) and

per-aggregation auditing to verify correct node behavior and prevent collusion. AVCOL can be

seen as incorporating availability dependence with a probabilistic aggregation approach.

AVCOL leverages two services in a black-box manner: (1) a distributed availability monitoring

service (2) a decentralized probabilistically-shuffled membership protocol [37, 49, 100]. The

distributed availability monitoring service keeps track of the availability of nodes, and allows any

node’s availability to be queried. The reported availability could be either raw, aged, or

window-based (recent). We assume a consistent availability monitoring service, i.e., simultaneous

queries (e.g., from multiple nodes) for availability of a given node all return the same value. Our

implementation uses the AVMON decentralized monitoring system (Chapter 3), and our

experiments measure the effect of any inconsistencies arising from this use. We will elaborate on

the decentralized shuffled membership protocol in Section 5.8.2, where it is first used by our design.

55

These two leveraged services are themselves resilient to uncollaborative nodes. Recall from

Chapter 3 that AVMON reports accurate availabilities in spite of large numbers of uncollaborative

nodes. As Section 5.8.2 shows, we use the membership protocol only for selecting children and

parents in the aggregation tree — thus an uncollaborative node cannot increase its own inclusion

probability by tampering with the membership.

AVCOL implements its global predicates in a similar way to AVMEM’s (Chapter 4)

decentralized availability-aware predicates for membership. The availability-aware aggregation

problem addressed in these pages is a natural follow-up, and extends the idea of global predicates

to the aggregation problem. This problem requires an entirely new set of design techniques.

The probabilistic aggregation in AVCOL trees is described in Section 5.6, while Section 5.7

discusses how trees are constructed in spite of selfish and colluding nodes. Section 5.8 presents our

auditing scheme, and we present experimental results in Section 6.3.

5.5 Related Work

Centralized aggregation schemes based on user scripts or CoMon-like tools [109] collect a lot of

information periodically (e.g., once every 10 minutes) from all nodes, maintaining these in a

queriable database. Decentralized aggregation schemes scale better by using in-network

aggregation. Many of these build aggregation trees either based on domain layout (e.g.,

Astrolabe [97] or Ganglia [64]), or by using a structured overlay (e.g., SDIMS [105], PIER [47],

or [11]), or randomly on demand (e.g., MON [58]), or based on other techniques. Robust

aggregation can be done either via gossip [50, 51] or via multiple paths in sensor networks [74].

However, none of these systems above have addressed the effect of selfish or colluding nodes.

Similar to many decentralized approaches, AVCOL builds per-aggregation trees. Yet, unlike them,

AVCOL innovates in being the first to satisfy explicit availability-based predicates.

Game theoretic techniques have been applied for systems with arbitrary rational nodes [86],

yet they are often too complex and bandwidth-consuming for large distributed systems. The BAR

model [7] considers Byzantine, altruistic and rational nodes, but has not been applied to the

aggregation problem. In addition, BAR allows rational nodes only to be selfish, but not colluding.

While AVCOL does not consider Byzantine (malicious) attacks, it does address aggregation under

selfish and colluding behavior.

While traditional protocols typically provide a deterministic bound on the number of

56

attackers, e.g., [16], AVCOL tolerates an arbitrary number of selfish nodes. In addition, it provides

a probabilistic tolerance to large numbers of colluders in the system. Finally, auditing mechanisms

have been used to ensure replica correctness in spite of attacks and bit-rot in LOCKSS [63], as well

as for detection of Byzantine behavior in PeerReview [43]. Similar to PeerReview, AVCOL reports

selfish and colluding nodes via signed non-repudiable proofs.

5.6 Probabilistic Aggregation in AVCOL Trees

We first describe how AVCOL trees aggregate data in order to satisfy a given global predicate g.

While Section 5.7 will describe how these trees are constructed in order to combat selfish and

colluding nodes, the tree aggregation itself is agnostic to such uncollaborative nodes. In other

words, the current section assumes no nodes are selfish or colluding.

AVCOL trees are built so that each node x’s tree parent has an availability ≥ av(x). In other

words, if a node y is a tree parent of a node x, then it is true that av(y) ≥ av(x). Notice that any

node in the system can find a prospective parent with a higher or equal availability than itself,

since in the worst case it can go to the sink node which has an availability of 1.0. Inductively, this

implies that an AVCOL tree can be built to cover all nodes in the system. Section 5.7 describes

tree construction; we now focus on the aggregation and predicate satisfaction. Figure 5.1

illustrates an example aggregation tree, and we elaborate below.

Each AVCOL node x uses the following probabilistic aggregation while passing data up

towards the sink. If node x is a leaf in the tree, it sends a message to its parent containing its own

value. If node x is an internal node, it waits to hear from all of its children. Each child c reports

an aggregate (denoted as AG(c)) for the subtree rooted at c. Node x then forwards to its own

parent a partial aggregate that: (1) includes x’s own value with probability 1.0, and (2) for each

child c, includes AG(c) with probability g(av(c))
g(av(x)) . Notice that this latter quantity is ≤ 1 as a

parent’s availability is never lower than a child’s. In doing this aggregation, the node can use

in-network aggregation to calculate a compact partial aggregation (e.g., sum, count, for avg.). The

sink node executes step (2) as well, and uses the resulting aggregate as the final answer.

Theorem 5.6.1. Consider an epoch during which no nodes join, leave or fail from the system.

For any node x that is online and in the tree during this epoch, its own value appears in the global

aggregate reported at the sink node S, with probability g(av(x)).

Proof. The proof is by induction on the distance of node x from the sink. For the base case, notice

57

{w:0.5/1.0, {x:1.0, y:0.7/0.8, {z:1.0, v:0.55/0.6}:0.6/0.8 }:0.8/1.0 }

1.0
sink

{w:1.0}

{w:0.5, x:0.8, y:0.7, z:0.6, v:0.55}=

w
0.5

x

0.8

{y:1.0} {z:1.0, v:0.55/0.6}

y
0.7

v

0.6z

0.55

{v:1.0}

Figure 5.1: Example Aggregation Tree. g(av(node)) is shown for each node, and messages should
be read as {datavalue:probability}, with probabilities multiplicative. Final message at top shows
resultant inclusion probabilities for each node in the global aggregate. Notice that joining the sink
directly as child does not increase inclusion probability.

that the sink node S’s data is included with probability 1.0 = g(av(S)). Now for any other node x

with parent P , P will include x’s value in the aggregate sent to P ’s parent, with probability

g(av(x))
g(av(P)) . If this does happen, then x’s data will always accompany P ’s own value (which is passed

up to P ’s parent with probability 1.0), either all the way up to the sink or until it is

probabilistically dropped at some ancestor of P . Thus, by induction, since P ’s own value will

appear with probability g(av(P)) in the global aggregate, the probability that x’s own value will

appear in the global aggregate at sink S is = g(av(P)) · g(av(x))
g(av(P)) = g(av(x)). Note that this result

holds even if the node is a direct child of the sink node.

5.7 AVCOL Tree Construction

In a realistic setting with node churn, and with selfish and colluding nodes, the static AVCOL

trees of Section 5.6 may be ineffective. This is due to many reasons. Firstly, if parent-child

relationships are static, then for each node x that is offline during an epoch, all of x’s tree

descendants will have their values not included in the global aggregate. This will happen for all

epochs when x is offline. Secondly, during any epoch, a node x may send its data to more than one

parent, thus potentially increasing x’s inclusion probability via multiple counting. These

additional parents may be either colluders of x (who will pass on to their parents, x’s data), or just

unaware that x is selfishly sending duplicates.

AVCOL addresses these problems by dynamically constructing per-epoch aggregation trees. It

works by: (I) providing each node a flexible choice of parents (or children) for each aggregation

58

Valid Child of x

Tree Child of x

x

Child Selection: K = 5, fanout = 3

Valid Parent of xxTree Parent of x

Parent Selection: K = 5

Figure 5.2: Child selection (left) and Parent selection (right) example at node x.

epoch; (II) limiting this choice to a small set of valid parents (or children) that are selected based

on a consistent condition; and (III) running audit operations at the valid parents of each node to

verify its correct behavior. We describe these operations in the following sections. Intuitively

though, design choice (I) builds trees on the fly for each epoch — nodes try to “route around”

offline parents, and manage to create a path to the sink with high probability (w.h.p.). (II)

reduces the probability that two colluding nodes will be allowed to be parent and child. Finally,

(III) ensures that colluding nodes, and nodes sending data to multiple parents during an epoch,

are eventually caught and blackmarked.

AVCOL has two alternative flavors — child selection where nodes select children

(Section 5.7.1), and parent selection where nodes select select parents (Section 5.7.2). Child

selection and parent selection are illustrated with an example in Figure 5.2. We describe these

selection criteria next, and present their analysis. Subsequently, Section 5.8 discusses how nodes

discover children or parents, and the auditing mechanism.

5.7.1 Child Selection Approach

In this variant, each node x selects and discovers multiple valid children in the tree. The validity of

a prospective child node y depends only on the ids and availabilities of x and y, and is independent

of everything else in the system. Then, during any given epoch, node x selects as its tree children,

fanout random nodes among its valid children. It collects aggregates from these tree children

using the probabilistic forwarding of Section 5.6. x is free to choose different tree children in

subsequent epochs. We first describe the validity condition for child selection, and then the

per-epoch aggregation.

59

5.7.1.1 Selection Criteria for Valid Children

At a node x, a remote node y is a valid child if and only if the following consistent condition is

true: (i) av(x) ≥ av(y), and (ii) also

H(x, y) < min
(

K
N

· 1

cdfav(av(x))
, 1.0

)

(details to follow). Conversely, x is said to be a valid parent of y if both these conditions are true.

Here, H is a consistent hash function with range in the interval [0, 1]. For instance, H could be

either SHA-1 or MD-5, with outputs normalized to [0, 1]. x and y used within the hash function

are the bit-strings representing the ids of these nodes, e.g., their ip address + port.

As described in our system model in Section 2.1, N is a fixed parameter, and is set to the

estimated number of online nodes in the system. K is a small fixed parameter, set to the expected

number of valid children, typically K = θ(log(N)). cdfav() is the fraction of online nodes with an

availability ≤ av(x), i.e., it is the cumulative distribution function of node availability. The value

of cdfav() can be obtained from the probability distribution function (PDF) of the node

availability across the system. Recall that the PDF can be measured by the availability monitoring

service, and that it changes infrequently (see Section 5.3).

The discovery of the above valid children is discussed in Section 5.8.2; we now analyze the

properties of the selection scheme itself.

Theorem 5.7.1. At a given node x, the above child selection scheme has the following desirable

properties: (a) choice of valid children is uniformly at random from among all nodes with

availability lower than av(x), (b) consistency of the parent-child relation in spite of any system

changes extraneous to x and y, and (c) verifiability of this relation at any third node. Further, the

expected number of valid children for any node is O(K). Finally, if K = θ(log(N)), then the

graph created by the valid parent-child relationships is strongly connected w.h.p.

Proof. The child selection is random since it picks a node y (among those with av(y) ≤ av(x))

with a uniform probability min
(

K

N · 1
cdfav(av(x)) , 1.0

)

. The consistent hash function ensures that

the valid parent-child relationship depends only on the ids and availability of x, y. The validity is

verifiable at any third node, which can check the consistent condition using only the ids of x, y,

and their availabilities fetched from the availability monitoring service.

Next, the expected number of nodes with availability lower than av(x) is cdfav(av(x)) ·N , and

60

thus the expected number of valid children of x is:

≤
(

K
N

1

cdfav(av(x))

)

(cdfav(av(x)) · N) = K .

Finally, theoretical results about random digraphs (if avg. degree > 1, there is a giant

component) [21, 30] can be used to show that if K = θ(log(N)), then the graph created by the

valid parent-child relationships is strongly connected w.h.p.

5.7.1.2 Per-Epoch Aggregation

During each epoch, the sink initiates the protocol by sending a signed tree request to itself.

Suppose a node x sends y a signed tree request — y first checks if x is a valid parent (according to

the consistent condition), or if x = y = the sink. If neither is true, y reports x as an

uncollaborative node; the received tree request serves as non-repudiable proof of this accusation. If

x is a valid parent, y responds to it with an acknowledgement; further, y will refuse any future tree

requests during this epoch, sending negative acknowledgements to such requests (unless y is selfish

or colluding). Once a signed tree request has been received, y randomly chooses up to fanout

among its valid children, after verifying that they are still online and still satisfy the consistency

condition. y then sends these potential children signed tree requests from itself.

Since recruiting children does not affect a node’s own inclusion probability, a node has no

incentive not to recruit valid children. However, a colluding node may have an incentive to either

always (i.e., in every epoch) select as tree child a colluder node that already happens to be a valid

child, or to select as tree child a colluder node that is not a valid child. This enables the colluder

(i.e., the tree child) to send its data to either a non-valid parent, or to multiple parents. These two

behaviors are addressed by the auditing mechanisms described in Section 5.8.

In the aggregation for a given epoch, a node is a leaf if it either sends no tree requests (it

might not know any valid children), or it received negative acknowledgements to all its requests, or

it timed out before receiving an aggregate from any child. A leaf merely sends its own value, after

signing it, to its parent. Otherwise, consider an internal node that has received aggregates from

one or more valid children that it had sent tree requests to. This internal node waits until either

all its tree children have replied or a local timeout has elapsed. This node then audits these

children (described in Section 5.8.1); if this succeeds, x then uses the probabilistic forwarding rule

previously described in Section 5.6 to send the aggregated data to its parent. This data is signed

before being sent. All timeout values used at the leaf and internal nodes are (c · log(N)); this is

61

motivated by our latency calculations below. This timeout is local and based on when the

aggregation started at this node.

Once again, a selfish/colluding node has no incentive to time out early, or to maliciously drop

any of its children’s reported aggregates, since this does not affect the inclusion probability of itself

or any of its colluders. However, a node that colludes with some of its children (e.g., a non-valid

child, or a child sending data to multiple parents) may want to prevent this collusion from being

discovered by either not auditing, or by lying about the auditing result. Section 5.8 catches these

behaviors.

A couple of closing notes — first, although a node can have at most one parent per epoch, this

parent can be different across epochs. This provides fault-tolerance. Second, for either

asynchronous or periodic aggregation, if a correct node did not receive any tree request from a

parent during a given epoch, then it never participates in the tree for that epoch. We call such

nodes as orphans, and their presence reduces the coverage of the tree, which we analyze next.

5.7.1.3 Analysis

Child selection basically creates a random spanning tree among the nodes, with the sink as the

tree root. We now calculate the coverage C of the tree, i.e., the probability of a node being reached

from the sink by the tree during an epoch. Coverage of a node is important since it is a

prerequisite for the satisfaction of the global predicate at that node.

In order to isolate tree performance from uncollaborative behavior, we analyze coverage when

all nodes are correct (i.e., not selfish or colluding). Suppose node x has K valid parents, and let

NC = 1 − C=non-coverage probability, so that NC ≪ 1. Node x is not covered during an epoch

only if either (i) all of its valid parents are offline, or (ii) none of its valid parents are covered, or

(iii) none of the valid parents choose x as a child for this epoch. If a is the expected availability

across x’s valid parents (a thus increases as av(x) rises), then we can write these three probabilities

as: NC ≤ (1 − a)K + NCK + (1 − NCK) · (1 − fanout
K

)K . Now, let us assume K = m1 · log(N),

fanout = m2 · log(N), and m2 ≤ m1, where m1, m2 are constants. The results of gossip-based tree

building in [30] indicate that under these conditions, NC ≪ 1. Eliminating small terms:

NC ≤ (1 − a)K + NCK + (1 − NCK) · e−fanout

≃ (1 − a)K + e−fanout

=
1

Nm1·log 1
1−a

+
1

Nm2
.

62

Hence, if one uses high enough constant values for m1, m2, the coverage of the child selection

approach is C = Ω(1 − o(1)). Specifically, choosing m1 · log 1
1−a , m2 ≥ 1 yields coverage probability

C = Ω(1 − 1
N).

A caveat in the above analysis is that as av(x) increases, so does a, and thus the coverage

probability of node x may decrease. Thus, if one were to set the parameter value of

K = log 1
1−a∗

(N) to be same at all nodes, one should plug in a high enough value of a∗ in order to

still obtain good coverage for such nodes. Higher availability nodes that see themselves excluded

from too many epochs (i.e., not satisfying the global predicate) can use sink redirection, i.e., such

nodes can request the sink and become its direct tree children. Due to probabilistic forwarding at

the sink (Section 5.6), this redirection still satisfies the predicate at these nodes.

Finally, one can use results from gossip multicast [26] to show that the latency of aggregation

— i.e., time from aggregate initiation to completion — is O(log(N)). The choice of timeout in

waiting for children’s answers is motivated by this calculation.

5.7.2 Parent Selection Approach

In comparison to child selection, parent selection has each node (1) select and discover multiple

valid parents based on a consistent condition, and (2) for each epoch, select one of its valid parents

as a tree parent, in order to forward data from itself and its children.

5.7.2.1 Selection Criteria for Valid Parents

At a node x, a remote node y is a valid parent if and only if the following consistent condition is

true: (i) av(x) ≤ av(y), and (ii) also

H(x, y) < min
(

K
N

· 1

1 − cdfav(av(x))
, 1.0

)

.

Conversely, x is said to be a valid child of y if both above conditions are true. The definition of H

and cdfav() remain the same as in Section 5.7.1. Similar to child selection, we can prove:

Theorem 5.7.2. At a given node x, the above parent selection scheme has the following desirable

properties: (a) choice of valid children is uniformly at random from among all nodes with

availability higher than av(x), (b) consistency of the parent-child relation in spite of any system

changes extraneous to x and y, and (c) verifiability of this relation at any third node. Further, the

expected number of valid parents for any node is O(K). Finally, if K = θ(log(N)), then the graph

63

created by the valid parent-child relationships is strongly connected w.h.p.

5.7.2.2 Per-Epoch Aggregation

The aggregation tree is built starting from the sink. Each node selects a tree parent from among

its valid parents. In order to do this, each node maintains a local, binary state variable for each

epoch. The node can be in one of two states — intree or notintree. At the start of an epoch, only

the sink is intree, while all other nodes are notintree. We now describe the tree construction

separately for each of the periodic and asynchronous problem settings.

First, for periodic aggregation, at the start of the synchronized epoch, each node sends one

tree request to each of its valid parents. A node selects as its tree parent the first reply received to

any of these requests, and then changes to intree. The node in turn also queues all its received

tree requests from valid children, and acknowledges them all when its own state first turns to

intree. On the other hand, in the asynchronous aggregation setting, each node periodically asks

each valid parent for the latest epoch numbers for which the parent is intree. For a given epoch,

whenever node x first discovers any of its valid parents that happens to be intree, then x does the

following: (i) selects this as its tree parent, (ii) sends it a tree request, and (iii) marks itself (i.e., x)

as intree. In a nutshell then, both the periodic and asynchronous schemes have the effect of the

intree state propagating top-down from the sink node.

Notice that selfish nodes have no incentive to lie about their intree/notintree state, since

recruiting children does not increase one’s inclusion probability. Further, all messages carrying this

state are signed so that they can be used to prove valid parent-child relationships. Thus, the only

downside of this protocol is that it potentially makes it possible for selfish nodes to acquire

non-valid parents — Section 5.8 catches these.

If a node does not find any of its valid parents marked as intree before a timeout expires, then

it uses sink redirection, i.e., it sends a tree request directly to the sink. The timeout is chosen as

c · log(N), is local to the node, and starts at the same time as the current aggregation epoch. The

sink may receive many tree requests; however, having the sink as tree parent does not improve a

node’s inclusion probability (due to the analysis in Theorem 5.6.1).

Finally, a node that has succeeded in recruiting a tree parent performs aggregation by using

the probabilistic forwarding of Section 5.6. A leaf node waits awhile (timeout chosen as c · log(N)

since it recruited the parent) before sending its value up to its parent. An internal tree node waits

until either the timeout elapses, or until all its tree children — those that requested a parent and

64

were acknowledged — have responded. It then audits the tree children (described in Section 5.8);

if this succeeds, it uses the probabilistic forwarding from Section 5.6. All aggregate messages sent

to a tree parent are signed.

Similar to child selection, a node x has no incentive to time out early or drop any received

aggregate from a tree child. However, such a node x may still lie about a colluder tree child that is

a non-valid child, or about a valid child sending data to x and multiple tree parents during the

same epoch. These are addressed by Section 5.8.1.

5.7.2.3 Analysis

First, one can show that the expected height of the parent selection tree during an epoch is

O(log(N)) [26]. Second, these trees obtain good coverage even without sink redirection, as we

show below.

Theorem 5.7.3. Consider an epoch during which no nodes join or leave. Suppose that each

online node has at least one path to the sink via valid child to parent pointers. Then each online

node is included in that epoch’s tree, i.e., coverage is 100%.

Proof. The proof follows by induction on the distance from the sink, i.e., minimum length of a

path from the node to the sink. The base case is true since any valid child of a sink node will

become its tree child soon after the sink turns intree. Consider a node x at distance i from the

sink — at least one of its valid parents is at distance (i − 1), will turn intree during this epoch

(induction hypothesis), and thus x will also turn intree.

Thus, parent selection provides 100% coverage, which is better than the probabilistic coverage

of child selection. However, this comes at the cost of higher bandwidth overhead, as potential

parents need to be polled each epoch for an acknowledgement (to find out whether any has been

marked intree). Keep in mind that in parent selection nodes only keep track of potential parents.

We will evaluate and compare the child and parent selection strategies in Section 6.3.

5.8 Auditing and Discovery

This section describes how nodes carry out per-epoch audit operations (Section 5.8.1), how nodes

discover children or parents (Section 5.8.2), and periodic audit operations (Section 5.8.3). The

audit operations detect selfish nodes and small collusion groups eventually, while probabilistically

preventing large collusion groups from having an impact.

65

5.8.1 Per-aggregation Auditing

We describe per-epoch audit operations that aim to detect pairs of colluding nodes which are not

valid parent-children (i.e., do not satisfy the consistent condition), yet acted as tree

parent-children during the given epoch. These per-aggregation audit operations apply to both the

child and parent selection flavors of AVCOL.

Consider a node x forwarding a partial aggregate message with its contribution and

contributions from its tree children — the ones included by the predicate — to its tree parent P .

This message is signed by node x. Denote the aggregates from x’s tree children C1, C2, . . . , Cm

respectively as AG1, AG2, . . . , AGm, x’s own value as v(x), and the aggregate calculated from the

above (m + 1) values as AGx. Denote the corresponding signed messages received from each Ci as

{AGi}Ci. Then, the message sent by x is: {AGx, C1, {AG1}C1 , . . . , Cm, {AGm}Cm , v(x)}x.

When parent P receives this signed message, it first verifies whether x is indeed a valid child of

P . This auditing is done by fetching the availability of x from the availability service, and checking

the consistency condition. If the check fails, P can report x as an incorrect node, with the above

signed message included in the report as a verifiable, non-repudiable and non-forgeable proof1. If x

is a valid child, P next verifies for each Ci, whether x is a valid parent of Ci. If all Ci’s pass this

test, x then checks whether AGx is indeed a correct aggregate derived from AG1, . . . , AGm, v(x).

If this succeeds as well, then P probabilistically forwards AGx to its own tree parent, as described

earlier in Section 5.6. However, if P finds some Ci to not satisfy the hash consistency condition,

then it reports both x and Ci as colluding nodes. The signed aggregation message received from x

is a verifiable, non-repudiable and non-forgeable proof of collusion. Formally:

Lemma 5.8.1. If node x is not a valid parent of y, but acts as its tree parent during some epoch,

and if none of the colluders of x are its valid parents, then x and y will be reported.

Let us call the above as a 2-hop auditing scheme since each node checks for validity of tree

parent-child relationships up to 2 hops below it in the tree. In general, the above scheme can be

generalized to t-hop auditing by passing along signed aggregation messages from all its tree

descendants up to t hops below it, and subjecting it to consistency checks. We can thus generalize:

Theorem 5.8.1. If no group of colluding nodes has more than t nodes, then the t-hop auditing

scheme will detect at least two such colluding nodes.

1E.g., Such reports can either be sent to a central auditor, or fed into a reputation system.

66

In addition to the above deterministic detection for small collusion groups, AVCOL also

provides probabilistic tolerance to collusions. We show this via two theorems:

Theorem 5.8.2. Given a group of M colluding nodes selected randomly from across the node

population, and M ≪ 3

√

N
K

(i.e., K ·M3

N = o(1)), it is true w.h.p. that no pair of colluders is

related as a valid parent and child.

Proof. We present the proof for only parent selection; a similar proof holds for the child selection

case. First, let the system have N nodes. Rank all the nodes from 0 to (N − 1); a lower rank is

assigned to a node with a higher availability. Now, consider a colluder node x in the group that is

at rank r. Due to parent selection, and since there are an expected (r
N · M) colluders with higher

availability than x, the expected number of colluders that are valid parents of x is:

min
(

K

N · N
r , 1.0

) (r
N · M

)

= min
(

K ·M
N , r·M

N

)

.

Now, the probability of a colluder node having rank r < K is = K

N , thus the probability that

no colluders in the group have rank < K is = (1 − K

N)M ≥ 1 − M·K
N = 1 − o(1). Here we have

used the fact that (1 − x)a ≥ 1 − a · x for x ∈ [0, 1), a > 0. Thus, there are no colluders with rank

< K w.h.p. This means we can ignore the second term (r·M
N) within the min expression above.

Next, for a colluder node x at rank r, and another colluder node y at rank i (> r), the

probability that x is a valid parent of y is =
K ·M

N
i . Since there are an expected (N−r

N ·M) colluders

with higher rank than node x, the probability that no colluder nodes will be valid children of x is:

Πcolluders,i>r

(

1 − K · M
N · i

)

≥
(

1 − K · M
N · r

)
N−r

N ·M

≥
(

1 − K · M2

N2 · N − r
r

)

Finally, the probability no node pair from among the M colluders are related as valid

parent-children is:

Πcolluders,r

(

1 − K · M2

N2 · N − r
N

)

≥
(

1 − K · M2

N

)M

≥
(

1 − K · M3

N

)

= 1 − o(1)

Theorem 5.8.3. Suppose there is a group of M colluding nodes selected randomly across the node

population, with M ≪ 3

√

N
K

(i.e., K ·M3

N = o(1)). Then, during an epoch where at least one pair

67

among these colludes, the 2-hop auditing scheme discovers at least one colluding pair w.h.p.

Proof. From Theorem 5.8.2, it is true w.h.p. that no node pair is a valid parent-child. Thus, if

some nodes collude as parent-child during an epoch, there will be a chain of such colluders created

by tree child to tree parent relationships. Yet, since the sink is a non-colluder, we are assured that

any such chain will end in a non-colluder node. This non-colluder will, due to the described

auditing, detect collusions of the two chain nodes right below it in the tree.

5.8.2 Discovering Valid Children/Parents

In order to discover valid children in child selection (respectively valid parents in parent selection),

we leverage a decentralized shuffling membership service such as CYCLON [100], T-Man [49], or

AVMON’s coarse view (Section 3.7.3). A decentralized shuffling protocol service maintains, at each

node, a partial and weakly consistent list of nodes, in such a way that the list is (i) a random

selection and (ii) is constantly changed (shuffled). This maintenance depends on gossiping, i.e., a

node will periodically contact a peer chosen uniformly at random from the network, and then

exchange information. The entries in the list are updated lazily, thus some may be stale and point

to offline nodes. The probabilistic-shuffling ensures that given two nodes x and y that are online

for long enough, the entry for node y will eventually appear in the membership list at node x.

We discuss below the actions for the child selection variant; parent selection is analogous.

Each node maintains a list of valid children at all times. Each node frequently and periodically

executes the following two actions. (1) It iterates through its current membership list and

evaluates the consistent condition on each entry (see Sections 5.7.1, 5.7.2). Any entries that satisfy

the consistent condition are added to the list of valid children. (2) The node also re-evaluates the

consistent condition on its current list of valid children; any entries no longer satisfying the

condition are removed from the valid children list. Notice that these steps involve querying the

availability service for each of the checked nodes2

Since a similar mechanism was presented and analyzed in Section 4.7.1, we do not reproduce

its analysis here. It suffices to mention that a membership list size of
√

N per node achieves quick

discovery with reasonably low bandwidth of (105 Bps for N = 1 million) and memory (6.3 KB).

The average discovery time is 5 hours (for N = 1 million), which is reasonable given the uptime of

nodes in P2P systems (e.g., 20%-30% of the nodes observed at any time in a P2P system have an

2Alternatively, AVCOL could leverage AVMEM’s availability-aware membership to discover valid children and
valid parents; but we decided that in order to study AVCOL’s behavior and properties in isolation, we would chose
to use a more modest approach than AVMEM.

68

uptime longer than one day [94]), Grids, and PlanetLab. Finally, due to the probabilistic shuffling

of the membership list, this mechanism guarantees eventual discovery of valid children that satisfy

the consistent condition for long enough.

We reiterate that an uncollaborative node cannot manipulate the membership protocol to

increase its own inclusion probability. This is because adding or deleting membership entries, or

refusing to participate in the membership protocol, only affects the discovery time of valid

parents/children, but does not change the consistent selection criteria.

5.8.3 Periodic Auditing

While the per-aggregation audit of Section 5.8.1 detected colluding nodes not satisfying the

consistent condition, it did not detect selfish nodes that during some epoch, send their data to

multiple valid parents that satisfy the consistent condition. A node may do this in order to

increase its own inclusion probability, and the multiple valid parents could either be its colluders

or non-colluders. Such behavior is detected by periodic auditing operations, which we describe

below. Periodic auditing is initiated by each node asynchronous, lazily and infrequently, and at a

much lower frequency than the parent/child discovery of Section 5.8.2.

In order to enable periodic audits, each node keeps two types of additional state. First, the

node keeps a log history of all aggregate messages received from each of its tree children, for all

past epochs since the last periodic audit operation it initiated. Second, the node x maintains a list

of the step-parents of each of its own valid children. In other words, x maintains, for each of its

own tree children c that have sent x past aggregates, all the valid potential tree parents of node c.

For child selection, discovery of step-parents can be started whenever the valid child is discovered.

For parent selection, this discovery is started when the first aggregate is received from this child.

Notice though that if a child never sends an aggregate to x, it does not really need to be audited.

Step-parent discovery is implemented using gossiping — the step-parents of such valid children

c are discovered in a similar manner to Section 5.8.2, i.e., by frequently and periodically snooping

on the membership list at x, and checking (via the consistent condition) whether any of the

membership list entries are valid parents of c. In addition, node x keeps this list up to date by

periodically checking the consistent condition, purging out entries that are no longer valid

step-parents. Due to the probabilistically-shuffled nature of the membership list, this mechanism

ensures eventual detection of all step-parents of valid children.

Node x then uses the above additional state to initiate infrequent and periodic audit

69

operations for its valid children. Specifically, for each valid child c, the periodic audit operation is

executed as follows. Node x contacts all the known step-parents of c, and sends to each of them a

log-slice for c. The log-slice for c is a list of aggregates signed by c, and received at x since the

latest periodic audit initiated at x. Audit messages are signed by the initiator node x, and contain

a sequence number differentiating it from previous audits by x. Each step-parent z upon receiving

such an audit message containing a log slice, first verifies whether x is a valid parent of c — if not,

z has a verifiable, non-repudiable and non-forgeable proof that x generated a spurious audit. If the

verification succeeds, z sends back to x its log-slice for c, i.e., all the aggregation messages that z

received from node c since its last audit.

Now, whenever node x hears back from a step-parent of c, it compares the received log-slice

with its own log-slice. It checks to see if there is any common epoch across both slices (recall that

log entries are signed and thus verifiable). If no epoch is common, node x does nothing. However, if

there is a common epoch across the two log-slices, then node x has a verifiable, non-repudiable and

non-forgeable proof that node c sent aggregation messages to multiple parents during an epoch.

Finally, whenever node x finds that a node c has stopped being a valid child (e.g., if its

availability changed so the consistent condition is no longer true), it immediately audits c, treating

it as a periodic audit. This ensures that x is able to audit its remaining log history for c, and

subsequently purges this log history.

The overhead of auditing is on expectation O(K) messages. Since Theorem 5.8.2 showed that

all the valid parents of a node are not its colluders w.h.p., we have:

Theorem 5.8.4. Suppose all the valid parents of a node x have discovered each other as

step-parents. If x sends data to multiple valid parents during any subsequent epoch, the periodic

auditing will eventually detect this behavior.

In practice, it is possible that a node’s availability varies so much that its valid parents are

unable to discover each other before they become invalid. Our experiments next evaluate how

much real availability traces affect the success of periodic auditing.

70

Chapter 6

Experiments

The goal of this chapter is to evaluate the performance of our AVMON, AVMEM, and AVCOL

implementations in a variety of distributed system settings. In order to do this, we choose the

approach of simulation. This allows us to evaluate our systems under several workload traces of

availability variation (i.e., churn), ranging from synthetic models, to traces obtained from real

systems (PlanetLab and Overnet).

Each section below details the protocol-specific metrics that were chosen to study

characteristics such as efficiency and scalability, tolerance to churn and failure, and resilience to

selfish and colluding behavior, among other characteristics.

Our systems are implemented in C. All our trace-driven discrete event simulations were run on

a 2.80GHz Intel P4 CPU machine with 2GB RAM and Fedora Core Linux. Both AVMEM and

AVCOL are built atop AVMON, which provides both the availability monitoring service and the

probabilistically-shuffled membership protocol that AVMEM and AVCOL require.

Before describing our experiments, we introduce the one set of traces that is common to

AVMON, AVMEM, and AVCOL.

Overnet Traces: Traces from the Overnet P2P file sharing network [12] are the common

real-life data-set used across AVMON, AVMEM, and AVCOL experiments. They provide realism

by allowing us to inject churn, i.e., availability variation, into our systems. These traces were

originally collected over a 7 day period, at 20 minute intervals, across a population of 2400

uniquely identified nodes. The traces are injected as such, without modification, into our systems.

Notice that the availability for 50% of the hosts is 0.3 measured over the 7 days, i.e., the traces

inject a lot of churn into our systems.

71

 0

 0.5

 1

 1.5

 2

 100 500 1000 2000

A
ve

ra
ge

 d
is

co
ve

ry
 ti

m
e

(m
in

ut
es

)

N

STAT
SYNTH

SYNTH-BD

(a) Average discovery times of first monitors
for the control group nodes introduced in
the three synthetic models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

F
ra

ct
io

n
of

 n
od

es
 d

is
co

ve
re

d
be

fo
re

 X
 s

ec
on

ds

Discovery time (seconds)

STAT, N = 100
STAT, N = 2000

(b) CDF of the STAT points in Figure 6.1(a).
For all values of N from 100 to 2000, at
least 96% of the nodes were discovered in
under 30 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

F
ra

ct
io

n
of

 n
od

es
 d

is
co

ve
re

d
be

fo
re

 X
 s

ec
on

ds

Discovery time (seconds)

SYNTH-BD, N = 100
SYNTH-BD, N = 2000

(c) CDF of the SYNTH-BD points in Fig-
ure 6.1(a). For all values of N from 100
to 2000, at least 93.3% of the nodes were
discovered within 60 seconds.

Figure 6.1: Variation of discovery time, when varying system size in the STAT,SYNTH,SYNTH-BD

models.

6.1 AVMON

We studied the effect of five different availability (or churn) models. These fall into three classes —

(I) synthetic churn models (labeled in our plots as STAT,SYNTH, and SYNTH-BD), (II) churn traces

from PlanetLab all-pairs-pings (labeled PL) [39], and (III) traces from the Overnet P2P system

(labeled OV) [12]. STAT models a static network with no churn, while SYNTH models a system where

nodes join and leave under exponential and memoryless rates (each 0.2N
60 per min, giving per-hour

a 20% join rate, and 20% leave rate), but there are no births or deaths. SYNTH-BD extends this

with node birth and death, following exponential and memoryless rates (each 0.2N
1440 per min, giving

per-day a 20% birth rate, and 20% death rate). All models in category (I) ensure a stable system

size, i.e., number of online nodes. PL,OV neither have a stable system size nor an exponential

assumption, but instead reflect the true availability traces. PL and OV traces were originally once

72

each sec and once each 20 min respectively, and are injected as such.

In all these scenarios, we used the Optimal-MDC variant with the following default settings:

1. coarse view protocol period (see Section 3.7.3) Tcv = 1 min;

2. per-node coarse view size cvs = 4 · 4
√

N , where N was the stable system size for

STAT,SYNTH,SYNTH-BD, and the long-term average system size for PL and OV (we set

cvs = 4 · cvsOptimal−MDC for performance reasons);

3. parameter K = log2(N) (see Section 3.7.2);

4. for H(.), libSSL’s [4] MD5 implementation using the first 64 returned bits;

5. forgetful pinging parameters τ = 2 min, c = 1 (see Section 3.7.4);

6. monitoring protocol period TM = 1 min (see Section 3.7.4).

The metrics of interest measured in the following sections are discovery time, along with

memory, computation, and bandwidth overheads. Each experiment on each of the plots shown

below was run for 48 hours. Each point on each plot depicts the average across relevant nodes

considered.

6.1.1 Effect of Varying System Size in the STAT,SYNTH,SYNTH-BD Models

This section shows the effect of varying system size N , ranging from 100 to 2000, on the synthetic

models STAT, SYNTH, and SYNTH-BD. We used an initial warm-up period of 1 hour where nodes

were born, died, joined, and left according to the respective model. For STAT and SYNTH, a control

group, consisting of a new set of nodes numbering 10% of the stable system size, was then made to

join simultaneously, in order to measure discovery time of their monitors. Control group nodes

subsequently follow the churn model. For SYNTH-BD, the control group was implicit, and contained

some nodes born after the warm-up stage.

Discovery Time

Although the expected number of monitors K = log2(N), we first measure, for each control group

node, the time to find at least one of its monitors, i.e., the “discovery time of the first monitor.”

Figure 6.1(a) plots the average time to discovery of the first monitor for each node in the control

group. For each point on the plot, the average was taken over all measured discovery times, but by

73

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3

T
im

e
to

 d
is

co
ve

ry
 o

f
X

 m
on

ito
rs

 (
m

in
ut

es
)

Monitors discovered

STAT, N=2000
SYNTH, N=2000

SYNTH-BD, N=2000

Figure 6.2: Average discovery times of first L monitors (L on x-axis) for each node in control group,
for the three synthetic models.

ignoring the one highest measured discovery time datapoint for that setting. Such points are

ignored because they are outliers (the top ignored values were 110 min, 72 min, and 42 min) and

would skew our conclusions if included. This plot illustrates two observations about the average

discovery time: (1) it stayed consistently below 1 minute (recall that the protocol period itself was

Tcv = 1 minute), and (2) it was not affected by joins and leaves (compare STAT and SYNTH lines),

although it appeared to be affected by births and deaths (compare SYNTH and SYNTH-BD lines). For

the SYNTH-BD setting, discovery time was measured from among the new nodes born after the

warm-up — these numbered as 47 for N = 100, 198 for N = 500, 390 for N = 1000, and 785 for

N = 2000.

Yet, discovery stayed fast in spite of births and deaths. Figures 6.1(b) and 6.1(c) show the

cumulative distribution function (CDF) of the discovery time for the two models STAT and

SYNTH-BD. Observe that in each of these settings, at least 93% of first monitors were discovered

within 60 seconds. To wrap up, Figure 6.2 shows the average times to discover, for each node, the

first L monitors of the node. This plot illustrates that for all churn models, P S(.) nodes were

discovered at uniform time intervals. Thus, we conclude that AVMON’s discovery time stays low,

regardless of birth, death, join and rejoin.

We can estimate the discovery time of the first monitor for N > 2000. Specifically, the E[D]

from Figure 6.1(a) is about 20 s for N = 2000 (SYNTH-BD). Further, the discovery time for any

given monitor of a given node grows as
√

N (Section 3.8.2, Optimal-MDC), and the system has

K = log2N . Thus, the discovery time for the first monitor at system online size N is

= 20 ·
√

N
log2N · log22000√

2000
. For N = 1 Billion nodes, the first monitor discovery time turns out to be

1.44 hours; this is smaller than the average uptime in Overnet (which is several hours).

74

 0

 5

 10

 15

 20

 25

 30

 100 500 1000 2000

A
ve

ra
ge

 n
um

be
r

of

 c
om

pu
ta

tio
ns

 p
er

 s
ec

on
d

N

STAT
SYNTH

SYNTH-BD

Figure 6.3: Average computations per time unit (with 1 standard deviation), averaged over all
control group nodes, for STAT,SYNTH,SYNTH-BD models.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

F
ra

ct
io

n
of

 n
od

es

w
ith

 le
ss

 th
an

 X
 c

om
ps

. p
er

 s
ec

on
d

Average computations per second

STAT, N = 100
STAT, N = 2000
SYNTH, N = 100
SYNTH, N = 2000
SYNTH-BD, N = 100
SYNTH-BD, N = 2000

Figure 6.4: CDF of the computational overhead from Figure 6.3.

Computational Overhead

Figure 6.3 shows that the average computations per second per node varied sublinearly with N ,

and the per-minute overhead was close to 2 · cvs2. Figure 6.4 shows the CDF across nodes. The

data showed that even for N = 2000, the worst-case computation at any node was 0.611 ms per

minute, about 1% of the CPU. Together, these plots show that the computational overhead of

AVMON is not influenced much by churn.

Memory Usage

The memory at each node x, due to (CV (x)| + |P S(x)| + |T S(x)|), is plotted in Figure 6.5.

Figure 6.6 shows the CDF. The measured memory utilization was close to the expected value of

(2K + cvs). For instance, when N = 2000 (and K = 11, cvs = 27), Figure 6.5 shows that for STAT,

the average per-node memory stayed below the expected value of 49 entries. For SYNTH,

SYNTH-BD, the average was only slightly above that expected, primarily because of garbage entries

in P S(.), T S(.) sets. Finally, in Figure 6.6, from the CDF’s for N = 2000, we conclude that the

memory usage of AVMON is minimally influenced by churn.

75

 0

 10

 20

 30

 40

 50

 60

 100 500 1000 2000

A
ve

ra
ge

 |P
S

| +
 |T

S
| +

 |C
V

|

N

STAT
SYNTH

SYNTH-BD

Figure 6.5: Average memory entries per node (with 1 standard deviation), over control group, for
STAT, SYNTH, SYNTH-BD. Points perturbed slightly for clarity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70

F
ra

ct
io

n
of

 n
od

es

 w
ith

 le
ss

 th
an

 X
 m

em
or

y
en

tr
ie

s

|PS| + |TS| + |CV|

STAT,N=100
STAT,N=2000
SYNTH,N=100

SYNTH,N=2000
SYNTH-BD,N=100

SYNTH-BD,N=2000

Figure 6.6: CDF of the memory overhead from Figure 6.5.

Bandwidth

The average outgoing bandwidth for the STAT model is (K + cvs) per minute. For N = 2000 (with

K = 11, cvs = 27), 8B per coarse view entry, 8B per monitoring ping message, this turned out to

be 5.067Bps per node. Section 6.1.4 studies bandwidth in more detail.

6.1.2 Effect of Varying Coarse View Size in STAT Model

We study the effect of varying cvs. In order to isolate varying cvs from churn, we used the STAT

model with the following values for cvs: ({4, 6, 8, 10} · 4
√

N). Even under the SYNTH model, the

indegree distribution of the coarse view graph was quite uniform: for N = 2000, cvs = 27, 85%

nodes had indegree=27, and only 2% had smaller indegree.

Figure 6.7 shows that the discovery time (average and standard deviation) decreased as cvs

increased. The curve for each value of N has a knee at its third data point — increasing cvs

beyond this (cvs = 8 · 4
√

N , e.g., for N = 2000, cvs ≃ 54), did not improve either the average or

variance of discovery time by much. Figure 6.8 plots both the memory utilization (left y-axis) and

76

 0

 5

 10

 15

 20

 25

 30

 16 20 24 28 32 36 40 44 48 52 56 60 64 68

A
ve

ra
ge

 d
is

co
ve

ry
 ti

m
e

(s
ec

on
ds

)

cvs

N=500
N=1000
N=2000

Figure 6.7: Average discovery time of first monitors (with 1 standard deviation) vs. cvs on STAT

churn model.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 20 24 28 32 36 40 44 48 52 56 60 64 68
 0

 20

 40

 60

 80

 100

 120

 140

 160

A
ve

ra
ge

 n
um

be
r

of
 m

em
or

y
en

tr
ie

s

A
ve

ra
ge

 n
um

be
r

of
 c

om
pu

ta
tio

ns
 p

er
 s

cvs

memory, N=500
memory, N=2000

comps., N=500
comps., N=2000

Figure 6.8: Memory entries vs. cvs, and computations per minute vs. cvs on STAT churn model.

the computational overhead per node (right y-axis). First, notice that for a fixed value of cvs, N

had no influence on either memory or computational overhead. Second, increasing cvs too much

beyond the curve’s knee (from Figure 6.7) raised the computational overhead. Yet, for practical

purposes, this overhead is negligible — even for cvs = 68, the expected 9375.79 hashes would take

only about 3.52 ms to execute (once per minute with a P4 2.1 GHz processor under WinXP SP 1,

C++ Visual .NET 2003). Third, the memory varied linearly with cvs — even for cvs = 68,

memory usage was 728B (assuming 8B per CV entry). Thus, in practice, the value of cvs should

be set based on the knee of the curve from Figure 6.7.

6.1.3 Effect of PlanetLab Traces, Overnet Traces, and a High-churn

Model

We study the effect of injecting availability traces from PlanetLab (PL) and from Overnet (OV). For

PL, we set N = 239, and K = 8, cvs = 16. For OV, we had N = 550, and K = 9, cvs = 19.

Figure 6.9 shows the CDF for discovery time of each node’s first monitor. In OV, a total of

Nlongterm = 1319 nodes had been born after two days — 97.27% of these had discovered their first

77

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3

F
ra

ct
io

n
of

 n
od

es
 d

is
co

ve
re

d
be

fo
re

 X

Discovery time (min)

OV
PL

Figure 6.9: CDF of Discovery time of first monitors, for each of PL and OV traces.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
of

 n
od

es

 w
ith

 le
ss

 th
an

 X
 m

em
or

y
en

tr
ie

s

|PS| + |TS| + |CV|

OV
PL

Figure 6.10: CDF of number of memory entries per node, for each of PL and OV traces.

monitors within 63 seconds after birth. For PL, Nlongterm = 239 after 2 days, and over 98% of

nodes’ first monitors were discovered within a minute after birth. Figure 6.10 shows that per-node

memory utilization was uniformly distributed across nodes. The OV line shows that node birth and

death cause memory utilization to be higher than the expected value (of 19 + 2 · 9 = 37), but no

node had over 81 memory entries. For PL, the maximum entry count was 44.

Finally, to study the effect of very high churn, we used a new churn model called SYNTH-BD2.

This resembled SYNTH-BD, but had twice the birth and death rate (i.e., λb = λd = 0.4N
1440 per min).

Figure 6.11 shows that this made no noticeable difference in discovery time, illustrating that

AVMON discovery is churn-resistant. Figure 6.12 shows the additional memory entries due to the

increased churn in SYNTH-BD2 was less than 10% over that in SYNTH-BD.

6.1.4 Forgetful Pinging, Optimizations

We evaluated the practical benefits of the forgetful pinging optimization (see Section 3.7.4) for the

SYNTH churn model. For this experiment, AVMON estimated each node’s availability as the

fraction of monitoring pings sent to that node which receive a response back. For N = 2000,

78

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2

F
ra

ct
io

n
of

 n
od

es
 d

is
co

ve
re

d
be

fo
re

 X

Discovery time (min)

SYNTH-BD, N=2000, N_longterm=2809
SYNTH-BD2, N=2000, N_longterm=3621

Figure 6.11: CDFs for the discovery time of first monitors, compared between two high-churn models.

 0

 10

 20

 30

 40

 50

 60

 70

 100 500 1000 2000

A
ve

ra
ge

 |P
S

| +
 |T

S
| +

 |C
V

|

N

SYNTH-BD
SYNTH-BD2

Figure 6.12: Average number of memory entries (with 1 standard deviation) for the experiment in
Figure 6.11.

 0.9

 0.95

 1

 1.05

 1.1

 2000 2040 2080 2120 2160 2200

E
st

im
at

ed
 a

va
ila

bi
lit

y
to

re

al
 a

va
ila

bi
lit

y
ra

tio

Node id

SYNTH, N=2000, Forgetful ping
SYNTH, N=2000, NON-Forgetful ping

Figure 6.13: Ratio of estimated availability to actual availability, with and without the forgetful
pinging optimization.

Figure 6.13 plots the ratio, for each node in the control group, of its estimated availability to its

real availability (i.e., actual fraction uptime). While the lack of the forgetful ping optimization

(“NON-Forgetful ping in plot”) measured availability accurately, the plot for the “Forgetful ping”

optimization had an average relative error of less than 5%, with a maximal error of 8%. In turn,

Figure 6.14 shows that the optimization reduced bandwidth consumed by “useless pings” (sent by

a node to nodes not currently in the system), by an order of magnitude.

79

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 u
se

le
ss

 p
in

gs
 p

er
 m

in
ut

e

N

SYNTH, Forgetful ping
SYNTH, NON-Forgetful ping

Figure 6.14: Forgetful pinging reduces useless pings sent to absent nodes. Bars show 1 standard
deviation.

Bandwidth

Figure 6.15 shows the CDF for the Outgoing Bytes per Second (BW) that nodes incurred in the

STAT and OV models. First, in STAT, with N = 2000 total nodes, 88% of the nodes had an outgoing

bandwidth below 10Bps. Notice that about 6.5% of nodes had a BW above 50Bps. We surmise

that this was due to the static nature of the STAT model, which caused indegree degradation,

which in turn caused responses to the excessive received pings. To address this, we introduced an

optimization (called “PR2”) whereby a node that had not received a monitoring ping for two

successive protocol periods would force all its coarse view nodes to add it to their own coarse

views. Figure 6.15 shows that this variant (labeled “STAT-PR2”) reduced bandwidth further for

the STAT model — the outgoing bandwidth was below 9Bps. In contrast, notice that in the

Overnet churn traces (OV), there was constant change in the coarse views due to node birth, death,

join, and leave, and consequently, the outgoing bandwidth was more uniform, with 99.85% of the

nodes spending below 11Bps.

6.1.5 Overreporting and Collusion

There are two fundamental ways to “attack” the reliability of AVMON’s results, when the intention

is to maliciously improve a node’s reported availability. (1) A node x can report 100% availability

for a legitimate T S(x) member node y — regardless of y’s actual availability. (2) An increasingly

larger set of colluding nodes in the network raises the chances that AVMON’s results cannot be

trusted. We call these attacks overreporting and (legitimate) pollution of colluder pinging sets.

80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

F
ra

ct
io

n
of

 n
od

es
 w

ith

le
ss

 th
an

 X
 o

ut
go

in
g-

B
W

Outgoing BW (Bytes per second)

STAT, N=2000
STAT-PR2, N=2000

OV

Figure 6.15: CDF of per-node outgoing bandwidth for the churned STAT model, and the churned OV

model.

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2

F
ra

ct
io

n
of

 n
od

es
 n

eg
at

iv
el

y
af

fe
ct

ed

Fraction of nodes misreporting its TS

SYNTH, Reporting 1
SYNTH-BD, Reporting 1

OV, Reporting 1
PL, Reporting 1

Figure 6.16: Fraction of nodes with above 0.2 error in measured availability, with some nodes
overreporting all T S(.) nodes’ availabilities as 100%.

Effect of Overreporting Attack

The experiment for Figure 6.16 had a fraction of nodes (x-axis) report 100% availabilities for all

their T S(.) nodes. The plot shows that the fraction of nodes whose measured availability

(averaged over their P S(.) nodes) differed from their actual availability by over 0.2, was very small

for all the four models SYNTH,SYTNH-BD,PL,OV, and only 3.5% nodes were affected in the worst

data point (for OV).

Pollution of Colluder Pinging Sets

Section 3.8.3 showed that AVMON can tolerate w.h.p. colluder set sizes = o(N
log(N)). We now

analyze the effect of varying the fraction of nodes in a single (large) colluder set. Since Byzantine

fault-tolerant protocols can tolerate one-third of nodes being uncooperative, we say a P S() is

polluted if at least one-third of it consists of colluders. Figure 6.17 shows the probability of a

colluder’s converged P S() being polluted (“pollution probability”), versus the fraction of colluders.

Although the plot is for N = 10K nodes, the same results hold for any N . We observe two facts:

81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
ol

lu
de

rs
 w

ho
se

 |P
S

| >
=

 1
/3

 p
ol

lu
te

d

Fraction of colluders out of 10000 nodes

Figure 6.17: P S() pollution among colluders. N = 10000, K = 14.

(1) with under 10% colluder nodes, the pollution probability is very small; (2) if one wished to keep

the pollution probability smaller than the colluder fraction, this is true for colluder groups smaller

than 25% — thus, w.r.t. this requirement, AVMON tolerates up to 25% nodes being colluders.

6.1.6 Conclusion

Our experiments showed that AVMON performs well under a variety of churn models — Overnet

and PlanetLab availability traces, and thre synthetic models. AVMON is scalable, efficient, with

fast monitor discovery, and resilient to selfish and colluding nodes.

6.2 AVMEM

In evaluating AVMEM, in order to be realistic, we inject churn (availability variation) traces from

the Overnet P2P system [12] into our system. PlanetLab traces were not used because of their low

rate of churn. By default, we build and use AVMEM overlays using the two sub-predicates of

Logarithmic Vertical Sliver (equation 4.3) and Logarithmic-Constant Horizontal Sliver (equation

4.6), from Section 4.6. We evaluate both the AVMEM overlay (Section 6.2.1) as well as the

management operations atop it (Section 6.2.2).

The metrics of interest in the AVMEM experiments are the distribution of the nodes in both

the V S and HS, compared to the actual availability distribution; resilience to selfish flooding and

false positives; accuracy, latency and overhead of the anycast and multicast operations.

6.2.1 Microbenchmarks: AVMEM Overlay Properties

We evaluate whether the number of horizontal and vertical sliver neighbors in our implementation

follow theoretical predictions. The system was allowed to warm up for 24 hours, and a snapshot

82

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 n

od
es

Availability

(a) Distribution of online nodes.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

Node availability

(b) Size of horizontal slivers with re-
spect to availability.

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

Node availability

(c) Size of vertical slivers with re-
spect to availability.

Figure 6.18: System Snapshot of Online Nodes. There are 442 nodes online at the time of the
snapshot. Each dot in the plot stands for a node.

-5

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

N
um

be
r

of
 n

od
es

 in
 H

S

Number of candidate nodes for HS

Figure 6.19: Horizontal Sliver Scaling:
Size of horizontal sliver at a node grows
sub-linearly with total number of nodes
within ǫ availability of the node. Stan-
dard deviation plotted symmetrically but
no data was negative.

 0

 200

 400

 600

 800

 1000

 1200

 0 0.2 0.4 0.6 0.8 1
N

um
be

r
of

 in
co

m
in

g
V

S
 r

ef
er

en
ce

s

Node availability

Figure 6.20: Vertical Sliver Link Distribu-
tion: Number of incoming vertical sliver
links to an availability range is uniform
([0,0.1] skewed as it has one node).

was taken of online nodes. Figure 6.18(a) shows that the availability distribution of online nodes in

this snapshot is highly skewed, making this trace set a good test for our algorithms.

Figure 6.18(b) and Figure 6.18(c) respectively show the distributions of horizontal sliver size

and vertical sliver size at all these online nodes. From Figure 6.18(c), it is clear that the median

values of the vertical sliver sizes are uncorrelated to the availability, as expected. Figure 6.18(b)

shows an increasing median value of the horizontal sliver size with node availability. Yet,

Figure 6.19 demonstrates that this increase is only sublinear — the horizontal sliver size grows

sublinearly with the total number of nodes present within ±ǫ availability. Finally, Figure 6.20

counts the total number of incoming vertical sliver links to nodes in different availability ranges.

We observe that this number is largely uncorrelated to the distribution of nodes (seen in

Figure 6.18(a)). Thus, we conclude that the AVMEM slice sizes follow theoretical analysis, even

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 n
on

-n
ei

gh
bo

rs
 a

cc
ep

tin
g

m
es

sa
ge

s

Node availability

cushion=0
cushion=0.1

Figure 6.21: Flooding Attack: Fraction of peers that are not currently neighbors that would accept
communications. Measurement averaged across 0.1-wide availability ranges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 r
ej

ec
te

d
re

la
tio

ns
hi

ps

Node availability

cushion=0
cushion=0.1

Figure 6.22: Legitimate Rejection Rate: Fraction of nodes that will reject communications from an
AVMEM in-neighbor. Measurement averaged across 0.1-wide availability ranges.

under a realistic churn model.

Attack Analysis

We first evaluate the effect of a flooding attack, where a selfish (or malicious) node wishes to send

out a message to all nodes that are not part of its AVMEM neighbor list(s). Although each node

checks each incoming message to verify if its sender is a valid in-neighbor (according to the

AVMEM predicate), and reject it if not, this is open to attacks due to several reasons: (1) nodes

may use cached and stale availability information to do this check, and (2) availability information

reported by our underlying AVMON service could give inconsistent or inaccurate answers.

Figure 6.21 (line for cushion=0) depicts that regardless of the availability of the selfish node, fewer

than 10% of nodes outside of its AVMEM neighbor list accept its flooding message. This is

reasonable — it means that to receive an audience from one additional peer, a selfish node must

obtain information about 10 additional peers.

84

Second, we evaluate how the above inaccuracies and cached information affect the rejection of

valid messages sent to AVMEM neighbors. Figure 6.22 shows that this number is below 30%

regardless of the sending node’s availability. To reduce this effect further, we add a constant

cushion to the right hand side of equation (4.1) in Section 4.6, i.e., to function f . This reduces the

rejection rate to below 20% while slightly increasing the effect of flooding attacks (see also

Figure 6.21). This is reasonable — it means that a node attempting to forward a message will

have to try only an expected 1
0.8 = 1.25 neighbors before succeeding. From these two attacks, we

conclude that AVMEM provides uniform attack resilience and acceptance rate for legitimate

messages, independent of the sending node’s availability.

6.2.2 Management Operations over AVMEM

In order to explore anycasts and multicasts systematically, we select the initiator node in one of

three ways, and the target range in one of three ways, thus effectively giving us nine combinations

for each management operation. Although we evaluated all the nine combinations, for brevity, we

show data for only the most interesting ones below. Specifically, the initiator is chosen as either (1)

LOW ∈ [0, 0.3333), or (2) MID ∈ [0.3333, 0.6666), or (3) HIGH ∈ [0.6666, 1.0). For threshold operations

(anycasts or multicasts), the target availability range was either 0.25, or 0.49 or 0.90. For range

operations, the target availability range was either one of [0.2, 0.3], or [0.44, 0.54], [0.85, 0.95]. Each

point on any plot is the average of 5 different protocol runs, each with 50 messages.

Basic Anycast Operations

We first evaluate anycast based on greedy forwarding using VS-only, HS-only, and HS+VS, as well

as simulated annealing with HS+VS (see Section 4.7.2). The retried-greedy variation will be

discussed soon. All anycasts are sent with T T L = 6. Among the nine options discussed above, the

following four settings were the most interesting. First, Figure 6.23 shows the results for a

range-anycast experiment with initiator in the MID and target [0.85, 0.95]. All variants gave a 100%

success rate for messages, with all except HS-only finishing w.h.p. within 1 hop. This makes

intuitive sense as messages will not travel far in availability space by using HS-only.

Second, Figure 6.24 shows the number of delivered range anycasts out of 50 sent, from nodes

in availability range HIGH to three different target availability ranges: [0.85, 0.95], [0.44, 0.54], and

[0.2, 0.3]. The third of these is the harshest scenario, since it is very likely that either (1) there are

no nodes online in the low availability ranges, or (2) the anycast takes a longer path via

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 r
an

ge
 a

ny
ca

st
s

tr
av

el
in

g
x

ho
ps

Number of hops

VS-only
HS+VS
HS-only

simulated annealing

Figure 6.23: Range Anycast: Hops re-
quired to delivery when sending from MID

to range [0.85, 0.95].

 0

 0.2

 0.4

 0.6

 0.8

 1

HIGH to [0.85, 0.95] HIGH to [0.44, 0.54] HIGH to [0.15, 0.25]

F
ra

ct
io

n
of

 d
el

iv
er

ed
 r

an
ge

 a
ny

ca
st

s

Range anycast type

Sim. Annealing
HS+VS
VS-only
HS-only

Figure 6.24: Range Anycast under in-
creasingly harsh scenarios: Lower target
availability ranges have lower success rate.

low-availability nodes, and thus has a high probability of being dropped inside the overlay, as its

TTL expires. Of the multiple options, HS+VS comes out the best.

Retried-Greedy Anycast

Figure 6.25 shows the reliability and latency of retried-greedy forwarding, for different values of

retry, under the harshest possible scenario of the initiator in HIGH and target range [0.2, 0.3]. The

latency on each virtual hop here was selected uniformly at random from the interval [20ms, 80ms].

Notice that even under such harsh scenarios, retry = 8 gives as good a performance as the 60%

delivery plateau, with a low average latency of 739ms.

Benefit of AVMEM Predicate

In order to compare the usefulness of the horizontal (logarithmic-constant) and vertical

(logarithmic) sub-predicates used in the above AVMEM overlay, we ran exactly the same

range-anycast operation from Figure 6.25, but over a random overlay graph similar to those

created by alternative membership protocols like SCAMP [36], CYCLON [100], T-MAN [100], etc.

For fairness, the outdegree of each node in the random graph is O(log(N∗)). Figure 6.26 shows the

data for this, and should be compared against Figure 6.25. A look at these figures tells us that for

management operations: (1) overlays based on AVMEM predicates give a higher success rate than

random graphs, while (2) both achieve similar latencies.

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 8 4 2
 0

 500

 1000

 1500

 2000

F
ra

ct
io

n
of

 a
ny

ca
st

s

A
ve

ra
ge

 d
el

iv
er

y
la

te
nc

y
(m

s)

Number of retries

Avg delivery latency
fraction ttl expired
fraction delivered

fraction retry expired

Figure 6.25: Retried Greedy Anycast
in harsh environment: Anycasts sent to
target availability range [0.15, 0.25] from
nodes in HIGH.

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 8 4 2
 0

 500

 1000

 1500

 2000

F
ra

ct
io

n
of

 a
ny

ca
st

s

A
ve

ra
ge

 d
el

iv
er

y
la

te
nc

y
(m

s)

Number of retries

Avg delivery latency
fraction ttl expired
fraction delivered

fraction retry expired

Figure 6.26: Retried Greedy Anycast
(Random Overlay, instead of AVMEM):
Anycasts sent to target availability range
[0.15, 0.25] from nodes in HIGH.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 w

or
st

 la
te

nc
y

be
lo

w
 X

Last message delivery time (ms)

HIGH to [0.85, 0.95]
HIGH to > 0.90
LOW to > 0.20

Gsp, HIGH to > 0.90
Gsp, LOW to > 0.20

Figure 6.27: Multicast Latency CDF: La-
tency of last message delivered for each
multicast.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 s

pa
m

 r
at

io
 b

el
ow

 X

(number spam) / (number could have been delivered)

HIGH -> [0.85, 0.95]
HIGH -> av > 0.90
LOW -> av > 0.20

Gossip: HIGH -> av > 0.90
Gossip: LOW -> av > 0.20

Figure 6.28: Multicast Spam Ratio CDF:
Ratio of number of multicasts received by
a node outside target range, to number of
valid nodes in range.

Multicast Operations

Figure 6.27 shows the latency performance of range- and threshold-multicast, using both flooding

(default) and lower-cost gossip (fanout = 5, Ng = 2, gossip period=1 s). The latency for each

multicast is the worst case, i.e., it is the time of the last receiving node obtaining the multicast.

The CDF shows that this stays below 300ms for flooding, and 5.5s for gossiping. Figure 6.28 shows

that the spam factor for multicasts is low, i.e., the fraction of multicasts overflowing the target

range, and reaching a node outside is below 8% for most cases, except the topmost case where

data is skewed by the small number of nodes in the target range. Finally, Figure 6.29 shows that

flooding gets a reliability above 90%, while gossip reaches 70%. Bandwidth savings due to gossip

may thus be worthwhile to applications less concerned about reliability.

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

F
ra

ct
io

n
of

 m
ul

tic
as

ts
 w

ith
 d

el
iv

er
y

be
lo

w
 X

(number delivered) / (number could have been delivered)

HIGH to [0.85,0.95]
HIGH to > 0.90
LOW to > 0.20

Gossip, HIGH to > 0.90
Gossip, LOW to > 0.20

Figure 6.29: Multicast Reliability CDF: Fraction of nodes inside target range, that received a
multicast.

6.2.3 Conclusion

We conclude that AVMEM is capable of building an availability-aware overlay, efficiently and

scalably. Anycast operations can be implemented effectively on top of AVMEM. Multicasting has

good latency, is reliable, and with low spam ratio. Selfish nodes are kept under control by the

predicates.

6.3 AVCOL

As in AVMEM’s evaluation, we only inject churn traces from the Overnet P2P system into

AVCOL. PlanetLab traces were not used because of their low rate of churn.

The two most important metrics in this evaluation are node coverage and satisfaction of

aggregation predicates — the former is important because we do not want nodes to be left out

during an aggregation round; the latter is important because we need to verify that the protocols

properly implement the expected behavior of the predicates. Additionally, we are concerned about

AVCOL’s resilience to selfish and colluding nodes, and AVCOL’s overhead.

Parameter settings

Unless otherwise noted, all experiments use the following settings. We use a value of N = 525

based on an estimate of the number of online nodes in the Overnet traces. Each node maintains a

partial and weakly consistent list of other nodes in the system, L, with the number of entries fixed

at |L| = ⌈
√

N⌉ = 23. In our implementation we use AVMON’s CV (.) as L, thus the underlying

AVMON system updates L periodically every 60 seconds (Section 5.8.2) — a longer period could

be used, but AVMON’s background bandwidth is only 6.81 Bps for 2000 nodes. AVCOL also

88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 15 20 25 30

A
ve

ra
ge

 fr
ac

tio
n

of
 o

rp
ha

n
no

de
s

K

Child Selection
Child Selection with adoption

Figure 6.30: Fraction of orphan nodes vs K for child selection, without and with adoption.

maintains, at each node, a list (V) of valid children (if child selection is used), or valid parents (if

parent selection is used). List V is refreshed once every four minutes (Section 5.8.2). Parameter K

is chosen as ⌈1.75 · ⌈log2(N)⌉⌉ = 18 (justified in our first experiment). Finally, we set fanout = K

in all experiments.

6.3.1 Node Coverage

We evaluate the coverage of our AVCOL trees, considering only child selection and no selfish or

colluding nodes. A node is covered if it is reachable from the sink via a path of tree parent-child

pointers. Uncovered nodes are said to be orphaned. Coverage improves as we increase the value of

K in our algorithm (Section 5.7); we choose K = ⌈c · ⌈log2(N)⌉⌉, and vary c. The upper curve in

Figure 6.30 shows the percentage of online nodes that are left orphaned as K is varied from 10 to

30. Each datapoint on the plot is an average taken over 200 epochs. It can be seen that beyond

K = 18 (c = 1.75) a plateau is reached and only about 10% nodes are orphans. This motivated

our default value for K .

Optimization: The number of orphans can be reduced by sink redirection (Section 5.7.1). We

implement this as adoption: if a node has been (1) not covered for at least O epochs, and (2) no

online node is a valid parent, then the sink will adopt the node as a child. Although this second

condition is not required for our algorithm, existence of valid parents can be checked by having

parents send periodic heartbeat messages to valid children. The lower curve in Figure 6.30 shows

that with O = 10, fewer than 2% nodes are orphaned. We also observed that in all simulation runs,

all orphans were covered within 10 epochs. Finally, we observed that the sink had to adopt only a

few orphaned nodes to reach full coverage; this is because an adopted node’s descendants are also

automatically covered by the adopted node, thus naturally avoiding scalability issues at the sink.

89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 e
po

ch
s

no
de

 is
 in

cl
ud

ed

Node availability

(a) g(x) = av(x) (Linear predicate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Node availability

(b) g(x) = (av(x))2 (Quadratic
predicate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Node availability

(c) if (av(x) > 0.5) g(x) = 1.0
else g(x) = 0.0 (Bimodal predi-
cate)

Figure 6.31: Probability of inclusion of a node as a function of its availability. Line shows predicate,
and datapoints are per-node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8R
at

io
 o

f c
ol

lu
di

ng
 li

nk
s

to
 n

on
-c

ol
lu

di
ng

 li
nk

s

Fraction of colluding nodes

Child selection
Parent selection

Figure 6.32: Ratio of colluding links to non-colluding links as a function of colluder group size.

6.3.2 Satisfying Aggregation Predicates

The main goal of AVCOL was to satisfy global predicates g relating each node x’s inclusion

probability to its availability av(x), as g(av(x)). Figure 6.31 shows the predicate satisfaction for

three specific predicates, under parent selection and no selfish or colluding nodes: (1) linear,

g(x) = av(x); (2) quadratic, g(x) = av(x)2; (3) bimodal, if (av(x) > 0.5) g(x) = 1.0 else

g(x) = 0.0. For these plots, the AVCOL system was allowed to warm up for 13 hours (simply to

allow collection of a long trace for validation), and 200 epochs were generated simultaneously and

independently. Each datapoint on these plots is an average over 200 epochs, and corresponds to

one node. For each datapoint, the y-axis value shows the fraction of the node’s online epochs

during which its own value was included in the global aggregate at the sink. The x-axis value plots

the availability of that node as reported by AVMON. The plot shows that in spite of the

distributed nature of the aggregation, predicates are satisfied by child selection trees in AVCOL.

The results for parent selection were similar, and are not plotted.

90

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 e
po

ch
s

no
de

 is
 in

cl
ud

ed

Node availability

Figure 6.33: Linear global predicate with child selection when 10% (dots) and 50% (crosses) of the
nodes are colluding.

6.3.3 Effect of Colluding Nodes

We create a colluding group of nodes by randomly selecting a sizable fraction of nodes. Colluders

follow valid parent-child relationships and the rest of the AVCOL protocol, except that during

each epoch every colluder node: (a) prefers as tree parent (resp. tree children) all colluders that

occur among its valid parents (resp. valid children); and (b) includes its colluder tree children’s

values with probability 1.0 in the aggregate that it passes up to its own tree parent.

First, Figure 6.32 plots the effect of colluder group sizes ranging from 10% to 75% of the node

population. Even with 25% of the nodes in a colluding group, only about 5% of the valid

parent-child links are between colluder pairs (in parent selection). This shows the advantage of

using the consistent condition of Section 5.7. Next, Figure 6.33 shows the effect on the linear

global predicate of two colluder groups — 10% and 50% of the node population. We make two

observations: (1) with 10% of the nodes in a colluding group, the predicate satisfaction is

indistinguishable from Figure 6.31, and (2) even with 50% nodes in the colluding group, the

predicate satisfaction does not degrade much.

6.3.4 Selfish Nodes Using Multiple Parents

We study the effect of “greedy nodes”, i.e., selfish nodes that forward data to multiple valid

parents. Due to the varying availability of nodes and potentially inconsistent availabilities reported

by AVMON, a greedy node may take a while to be detected by the periodic audit operations of

Section 5.8.3 — recall that step-parent discovery, to perform auditing, depends on a gossip-based

partial membership list. In this experiment, we select a few greedy nodes and have them send data

to multiple valid parents (2, 4, or 6), during just one epoch. We allow AVCOL to function

91

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

F
ra

ct
io

n
of

 g
re

ed
y

no
de

s
ca

ug
ht

Audit X min after epoch

Two parents
Four parents

Six parents
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24

F
ra

ct
io

n
of

 g
re

ed
y

no
de

s
ca

ug
ht

Audit X hour(s) after epoch

Two parents
Four parents

Six parents

Figure 6.34: Fraction of greedy nodes caught by periodic audit, as a function of audit frequency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

F
ra

c.
 o

f n
od

es
 th

at
 s

en
t <

=
 X

 m
es

sa
ge

s

Number of messages sent

Child selection
Parent selection

Figure 6.35: Number of messages per-aggregation.

normally, but vary the frequency of periodic auditing. Figure 6.3.4 shows, for child selection, the

fraction of greedy nodes caught as a function of the time between the epoch and the next periodic

audit. We make these observations: (1) the more greedy a node is (#parents data sent to), the

quicker it will be caught, (2) if a greedy node sends data to 4 or more parents, an auditing

frequency over once per hour will catch the greedy node, (3) greedy nodes sending to 2 parents or

fewer, require a higher auditing frequency (once every 20 min), and (4) lower frequency audits still

catch over half the greedy nodes, so a node that chooses to be greedy over several epochs will

eventually be caught.

6.3.5 Bandwidth and Latency

We compare child selection against parent selection. Figure 6.35 shows the cumulative distribution

(CDF) for per-aggregation number of messages. Figure 6.36 shows the CDF for background

bandwidth, arising from availability queries sent to the leveraged AVMON service. Figure 6.37

shows the latencies. Latency for a node is the time taken by its value to reach the sink, measured

92

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

F
ra

c.
 o

f n
od

es
 w

ith
 b

an
dw

id
th

 b
el

ow
 X

Outgoing bandwidth in bytes per second

Child selection
Parent selection

Figure 6.36: Bandwidth due to availability queries to AVMON.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

F
ra

c.
 a

gg
re

ga
te

s
w

ith
 la

te
nc

y
be

lo
w

 X

Latency (ms)

Child selection
Parent selection

Figure 6.37: Latency of Parent Selection (periodic) vs. Child Selection (asynchronous).

from the epoch start time. The network latency between each node pair is selected uniformly at

random in the interval [20ms, 80ms] (larger latency than a LAN). We find that: (1) The mean

per-aggregation bandwidth in both variants is comparable (15 messages/epoch), however parent

selection has a lower median because many nodes are tree leaves and send only 1 message. (2) The

median background bandwidth for the two variants is 20 — 30 Bps. (3) Child selection has higher

latency (median: 700 ms) due to tree construction, while parent selection (median: 250 ms) is

faster due to periodic aggregation, avoiding the tree construction phase. Note that these latencies

are significantly lower than the remaining uptime — which measures in minutes and hours — of

any one node, at any time, on widely deployed P2P systems [94]. Furthermore, node failure would

affect, on expectation, aggregates originating on low availability nodes. Finally, note that

AVMON’s background bandwidth for 2000 nodes is 6.81 Bps. These low bandwidth numbers make

the system scalable.

93

6.3.6 Conclusion

We conclude that AVCOL’s availability-aware global predicates work as expected, i.e., they

successfully relate each node’s inclusion propability in an aggregate, explicitly to the node’s

availability. Aggregation is fast and consumes low bandwidth. Additionally, useful predicates can

be satisfied in spite of many colluding nodes, and gossip-based auditing catches selfish nodes

quickly.

94

Chapter 7

Conclusions

This thesis has specified availability-dependent global predicates, and shown how they can be

efficiently and scalably realized for a class of distributed services, in spite of specific selfish and

colluding behaviors, using local and decentralized protocols.

First, we presented AVMON, the first distributed availability monitoring overlay, resilient to

selfish and colluding nodes that want to misrepresent their availability as higher than real. We

showed that AVMON is efficient, scalable, churn-resilient, and that its optimal variant

(Optimal-MDC) can rapidly find the monitor-target relationships.

Secondly, we presented AVMEM, the first availability-aware overlay. AVMEM efficiently uses

availability-dependent predicates to manage peer relationships, tolerating selfish nodes that would

like to flood the network with their messages, or spurious peer-relationships. We showed that

range/threshold multicast and range/threshold anycast can be implemented efficiently, and that

their availability-aware addressing has low spam ratio.

Third, we showed how to perform availability-aware aggregation in AVCOL, the first

availability-aware aggregation system. AVCOL efficiently implements availability-dependent

predicates, that relate the probability of inclusion of a node’s aggregate in the global aggregate to

that node’s availability. We showed that AVCOL can implement and realize arbitrary predicates

— our experiments showed that predicates are realized in spite of selfish and colluding nodes.

AVCOL is resilient to selfish nodes that try to forcibly add their aggregate to the global aggregate,

and can catch selfish nodes quickly.

Future Directions: There are many directions in which each of the contributions of this thesis

can be taken.

The ideas presented in AVMON can be extended to the distributed monitoring of new metrics

besides availability. The metrics can be system-level or application-level, each with their new

challenges, specially in the face of selfish and colluding nodes. This can be used to create

95

“contribution-aware” distributed services, where the service received by a node will improve

depending on that node’s contribution with respect to a particular metric. Some related ideas are

mentioned in Section 1.2.

AVMON’s self-organization can be useful in cloud-computing clusters, where easing the

responsibilities of the administrators is important. Additionally, it can lead to research into better

monitoring of node failures, both intra-cluster and inter-cluster, with the goal of masking cluster

failure and improving the dependability of cloud-computing applications.

A middle-ground between fully-distributed monitoring and centralized monitoring can be

inspired by AVMON — consider a small set of “super-nodes” inside a cluster, where they partition

the target nodes to be monitored in a self-organizing way similar to AVMON. This middleground

can help adoption of P2P ideas in commercial systems.

AVMEM can be used to implement further availability-aware distributed protocols and

applications. For example, distributed applications like DHTs usually optimize their routing tables

by choosing nodes that are close in the network. They could be extended to choose nodes

according to their availability, thus decreasing the damage that churn can potentially cause on

DHTs, e.g., a partition.

Another direction suggested by AVMEM is the creation of new membership protocols, where

the relationships are based on a particular system-level or application-level metric, e.g., available

bandwidth, available storage, contributed CPU, percentage of messages forwarded. New and

interesting management operations can result from this work.

AVCOL suggests that new aggregation systems can be defined, where predicates bias the

inclusion probability of a node’s aggregate as a function some metric. It is also worth exploring

how availability-aware tree building could be applied in other environments, e.g., tree-based

multimedia streaming.

Energy constrained systems, such as sensor networks and mobile ad hoc networks, could take

advantage of the global predicate idea, by ignoring the link between node availability and service

received by the node from the system. Consider, for instance, a sensor network that realizes a

global predicate for aggregation, biased on remaining node energy, with a forwarding rule similar

to AVCOL’s, but using energy instead of availability. Some aggregates would not be forwarded all

the way to the sink, probabilistically biased by energy, similarly as to how AVCOL

probabilistically biases aggregate inclusion according to availability.

Finally, one can extend the concept and specification of global predicates, and their

96

decentralized realization, to other distributed services beyond monitoring, membership, and

aggregation.

97

References

[1] Apache hadoop project. http://hadoop.apache.org.

[2] AVMON’s LGPL’ed (Free Software) implementation. http://avmon.sourceforge.net/.

[3] eMule. http://www.emule-project.net.

[4] Open source toolkit for ssl/tls. http://openssl.org.

[5] Speed benchmarks for MD5 and other cryptographic functions.
http://www.eskimo.com/∼weidai/benchmarks.html.

[6] E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, 5(10), 2000.

[7] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth. BAR fault
tolerance for cooperative services. In Proc. ACM SOSP, pages 45–58, 2005.

[8] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient Overlay
Networks. In Proc. ACM SOSP, pages 131–145, 2001.

[9] M. Armbrust, A. Fox, R. Grifth, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, UC Berkeley, February 2009.

[10] J. Aspnes and G. Shah. Skip graphs. In Proc. ACM-SIAM SODA, pages 384–393, 2003.

[11] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a
peer-to-peer network. Technical report, Stanford Univ., 2003.

[12] R. Bhagwan, S. Savage, and G. Voelker. Understanding availability. In Proc. International
Workshop on Peer-to-Peer Systems, pages 135–140, Feb. 2003.

[13] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker. Total Recall: System
support for automated availability management. In Proc. Usenix Symposium on Networked
Systems Design and Implementation (NSDI), pages 337–350, 2004.

[14] F. Cappello and et al. Grid’5000: A large scale, reconfigurable, controlable and monitorable
Grid platform. In Proc. GRID, 2005.

[15] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
SplitStream: High-bandwidth content distribution in a cooperative environment. In
SOSP’03, 2003.

[16] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems, 20(4):398–461, 2002.

[17] B. Chor and C. Dwork. Randomization in byzantine agreement. Advances in Computing
Research, 5:443–498, 1989.

98

[18] J. Chu, K. Labonte, and B. Levine. Availability and locality measurements of peer-to-peer
file systems. In Proc. SPIE, vol. 4868, 2002.

[19] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek,
J. Kubiatowicz, and R. Morris. Efficient replica maintenance for distributed storage systems.
In Proc. Usenix Symposium on Networked Systems Design and Implementation (NSDI),
pages 45–58, 2006.

[20] B. Cohen. Incentives build robustness in BitTorrent . In Proc. Workshop on Economics of
Peer to peer systems, 2003. http://bitconjurer.org/BitTorrent/.

[21] C. Cooper and A. Frieze. The size of the largest strongly connected component of a random
digraph with a given degree sequence. Combinatorics, Probability and Computing,
13(3):319–337, May 2004.

[22] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. In Proc. ACM SOSP, pages 200–215, 2001.

[23] E. Damiani and et al. A reputation-based approach for choosing reliable resources in
peer-to-peer networks. In Proc. 9th ACM CCS, 2002.

[24] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable Weakly-consistent Infection-style
process group Membership protocol. In Proc. IEEE International Conference on Dependable
Systems and Networks (DSN), pages 303–312, 2002.

[25] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. pages
137–150, December.

[26] A. J. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algorithms for
replicated database maintenance. In Proc. 6th ACM PODC, pages 1–12, 1987.

[27] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 251–260, London, UK, 2002. Springer-Verlag.

[28] D. E. Eastlake and P. E. Jones. Us secure hash algorithm 1 (sha1).
http://www.ietf.org/rfc/rfc3174.txt?number=3174.

[29] F. K. et al. Report of the NSF Workshop on Research Challenges in Distributed Computer
Systems. http://www.nsf.gov/cise/cns/geni/workshop report.pdf.

[30] P. T. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P. Kouznetsov.
Lightweight Probabilistic Broadcast. In Proc. 2001 International Conference on Dependable
Systems and Networks (DSN), pages 443–452, 2001.

[31] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for peer-to-peer
networks. In EC ’04: Proceedings of the 5th ACM conference on Electronic commerce, pages
102–111, New York, NY, USA, 2004. ACM.

[32] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-riding and whitewashing in
peer-to-peer systems. In Proc. PINS, pages 228–236. ACM, 2004.

[33] M. J. Fischer, N. A. Lynch, and M. Patterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, April 1985.

[34] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable virtual
organizations. International J. Supercomputer Applications, 2001.

[35] M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing Content Publication with
Coral. In Proc. Usenix/ACM NSDI, 2004.

99

[36] A. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership management for
gossip-based protocols. IEEE Transactions on Computers, 52(2):139–149, Feb. 2003.

[37] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. SCAMP: peer-to-peer lightweight
membership service for large-scale group communication. In Proc. 3rd NGC, pages 44–55.
LNCS 2233, Springer, 2001.

[38] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership management
for gossip-based protocols. IEEE Transactions on Computers, 52:139–149, Feb. 2003.

[39] P. B. Godfrey, S. Shenker, and I. Stoica. Minimizing churn in distributed systems. In Proc.
ACM SIGCOMM, 2006.

[40] S. Guha, N. Daswani, and R. Jain. An experimental study of the skype peer-to-peer voip
system. In IPTPS’06: The 5th International Workshop on Peer-to-Peer Systems, 2006.

[41] I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse. Kelips: building an
efficient and stable P2P DHT through increased memory and background overhead. In Proc.
2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[42] I. Gupta, A. M. Kermarrec, and A. J. Ganesh. Adaptive and efficient epidemic-style
protocols for reliable and scalable multicast. Technical Report, Microsoft Research,
Cambridge, UK, 2001.

[43] A. Haeberlen, P. Kouznetsov, and P. Druschel. Peerreview: practical accountability for
distributed systems. In Proc. ACM SOSP, pages 175–188, 2007.

[44] M. Haridasan, I. Jansch-Porto, and R. van Renesse. Enforcing fairness in a live-streaming
system. In Proc. ACM MMCN, 2008.

[45] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable overlay
network with practical locality properties. In Proc. USITS, 2003.

[46] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. A measurement study of a large-scale
P2P IPTV system. IEEE Transactions on Multimedia, 9(8):1672–1687, Dec. 2007.

[47] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Querying
the Internet with PIER. In Proc. VLDB, 2003.

[48] IBM. The Oceano Project. http://www.research.ibm.com/oceanoproject/.

[49] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay toplogy management.
Self-Organising Systems: Engineering Self-Organizing Systems, LNCS 3910:1–15, Jul. 2005.

[50] M. Jelasity and A. Montresor. Epidemic-style proactive aggregation in large overlay
networks. In Proc. 24th ICDCS, 2004.

[51] D. Kempe, A. Dobra, and J. Gehrke. Computing aggregate information using gossip. In
Proc. 44th IEEE FOCS, 2003.

[52] A.-M. Kermarrec, L. Massoulie, and A. J. Ganesh. Probabilistic reliable dissemination in
large-scale systems. IEEE Transaction on Parallel and Distributed Systems, 14(3):248–258,
Mar. 2003.

[53] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers. Decentralized schemes for
size estimation in large and dynamic groups. In IEEE NCA, 2005.

[54] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative byzantine
fault tolerance. SIGOPS Oper. Syst. Rev., 41(6):45–58, 2007.

100

[55] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, 1982.

[56] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR gossip. In
Proc. Usenix OSDI, 2006.

[57] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. F. Kaashoek. Comparing the performance of
distributed hash tables under churn. In Proc. 3rd IPTPS, February 2004.

[58] J. Liang, I. Gupta, and K. Nahrstedt. Reliable on-demand management operations for
large-scale distributed applications. ACM SIGOPS OSR, 41(5):82–88, October 2007.

[59] J. Liang, R. Kumar, and K. W. Ross. The fasttrack overlay: A measurement study.
Computer Networks, 50(6):842–858, Apr. 2006.

[60] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng. Anysee: Peer-to-peer live streaming. In
Proc. of INFOCOM, April 2006.

[61] V. Lo, D. Zhou, Y. Liu, C. Gauthier-Dickey, and J. Li. Scalable supernode selection in
peer-to-peer overlay networks. In Proc. IEEE Hot-P2P, pages 18–27, 2005.

[62] T. Locher, R. Meier, R. Wattenhofer, and S. Schmid. Robust live media streaming in
swarms. In NOSSDAV ’09: Proceedings of the 18th international workshop on Network and
operating systems support for digital audio and video, pages 121–126. ACM, 2009.

[63] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, M. Baker, and Y. Muliadi.
Preserving peer replicas by rate-limited sampled voting. In Proc. ACM Symposium on
Operating Systems Principles (SOSP), pages 44–59, 2003.

[64] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring system:
Design, implementation, and experience. Parallel Computing, 30:817–840, July 2004.

[65] P. Maymounkov and D. Mazires. Kademlia: A peer-to-peer information system based on the
XOR metric. In Proc. 1st International Workshop on Peer-to-Peer Systems (IPTPS),
volume 2429 of Lecture Notes in Computer Science, pages 53–65. Springer Verlag, 2002.

[66] J. W. Mickens and B. D. Noble. Exploiting availability prediction in distributed systems. In
Proc. Usenix Symposium on Networked Systems Design and Implementation (NSDI), pages
73–86, 2006.

[67] S.-H. Min, J. Holliday, and D.-S. Cho. Optimal super-peer selection for large-scale p2p
system. In Proc. ICHIT, pages 588–593, 2006.

[68] Y. M. Minsky and F. B. Schneider. Tolerating Malicious Gossip. Distributed Computing,
16(1):49–68, 2003.

[69] R. Morales, B. Cho, and I. Gupta. AVMEM - Availability-Aware Overlays for Management
Operations in Non-cooperative Distributed Systems. In Proc. ACM/IFIP/Usenix
Middleware, pages 266–286, 2007.

[70] R. Morales and I. Gupta. AVMON: Optimal and scalable discovery of consistent availability
monitoring overlays for distributed systems. In Proc. International Conference on
Distributed Computing Systems (ICDCS), pages 55–65, 2007.

[71] R. Morales and I. Gupta. AVCOL: Availability-Aware Information Aggregation in Large
Distributed Systems under Uncollaborative Behavior. Computer Networks (to appear), 2009.

[72] R. Morales and I. Gupta. AVMON: Optimal and scalable Discovery of Consistent
Availability Monitoring Overlays for Distributed Systems. IEEE Transactions on Parallell
and Distributed Systems, 20(4):446–459, April 2009.

101

[73] A. Muthitacharoen, R. Morris, and et al. Ivy: A read/write peer-to-peer file system. In
Proc. OSDI, 2002.

[74] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust
aggregation in sensor networks. In Proc. ACM SenSys, pages 250–262, 2004.

[75] D. Patterson. A conversation with Jim Gray. ACM Queue, 1(4), Jun. 2003.

[76] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive
technology into the Internet. In Proc. ACM Hot Topics in Networking (HotNets-I), pages
59–64, 2002.

[77] T. Pongthawornkamol. AVCast : New approaches for implementing availability-dependent
reliability for multicast receivers. Master’s thesis, University of Illinois at
Urbana-Champaign, 2006.

[78] T. Pongthawornkamol and I. Gupta. AVCast : New approaches for implementing
availability-dependent reliability for multicast receivers. In Proc. IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 345–354, 2006.

[79] T. Pongthawornkamol and I. Gupta. AVCast : New approaches for implementing
availability-dependent reliability for multicast receivers. IEEE Transactions on Network and
Service Management, 4(2):117–126, 2007.

[80] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The bittorrent p2p file-sharing
system: Measurements and analysis. In 4th International Workshop on Peer-to-Peer Systems
(IPTPS), 2005.

[81] Y. Qiao and F. E. Bustamante. Elders know best – handling churn in less structured p2p
systems. In P2P ’05: Proceedings of the Fifth IEEE International Conference on
Peer-to-Peer Computing, pages 77–86. IEEE Computer Society, 2005.

[82] M. Raab and A. Steger. Balls into bins - a simple and tight analysis. LNCS, Proc. 2nd
International Workshop on Randomization and Approximation Techniques in Computer
Science, 1518:159–170, 1998. http://citeseer.ist.psu.edu/296823.html.

[83] M. O. Rabin. Randomized Byzantine generals. In Proc. 24th IEEE FOCS, pages 403–409,
1983.

[84] V. Ramasubramanian, R. Peterson, and E. G. Sirer. Corona: a high performance
publish-subscribe system for the world wide web. In Proc. of NSDI’06, pages 15–28, 2006.

[85] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht, June 2004.

[86] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, 1st edition, 2005.

[87] A. Rowstron and P. Druschel. Pastry: scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. IFIP/ACM Middleware, pages 329–350, 2001.

[88] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proc. ACM Symposium on Operating Systems
Principles (SOSP), pages 188–201, 2001.

[89] T. Schwarz, Q. Xin, and E. L. Miller. Availability in global peer-to-peer storage systems. In
Proc. Workshop on Distributed Data Structures (WDAS), 2004.

[90] Y. Shu, B. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional range queries in
peer-to-peer systems. In Proc. P2P, pages 173–180, 2005.

102

[91] M. Srivatsa and L. Liu. Vulnerabilities and security threats in structured overlay networks:
A quantitative analysis. In Proc. ACSAC ’04, pages 252–261. IEEE Computer Society, 2004.

[92] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM, pages
149–160, 2001.

[93] D. Stutzbach and R. Rejaie. Characterizing unstructured overlay topologies in modern p2p
file-sharing systems. In Proc. IMC, pages 49–62, 2005.

[94] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-to-Peer Networks. In Proc. 6th
ACM SIGCOMM IMC, pages 189–202, 2006.

[95] Y.-W. Sung, M. Bishop, and S. G. Rao. Enabling contribution awareness in an overlay
broadcasting system. In Proc. ACM SIGCOMM, pages 411–422, 2006.

[96] TechWise Research Inc. Are some RISC-based clusters easier to manage than others? a
detailed comparison of the resources required to manage HP OpenVMS and IBM AIX Server
Clusters. http://h71000.www7.hp.com/openvms/whitepapers/sm whitepaper.pdf, 2004.

[97] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalabel technology for
distributed system monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.

[98] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proc.
Middleware ’98, 1998.

[99] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A secure economic
framework for p2p resource sharing. In Proc. Workshop on Economics of P2P Systems
(EconP2P), 2003.

[100] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive membership
management for unstructured P2P overlays. Journal of Network and Systems Management,
13(2):197–217, Jun. 2005.

[101] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van Steen. Sub2Sub: self-organizing
conten-based publish-subscribe for dynamic large scale collaborative networks. In Proc.
IPTPS, 2003.

[102] K. Walsh and E. G. Sirer. Fighting peer-to-peer spam and decoys with object reputation. In
P2PECON ’05: Proceedings of the 2005 ACM SIGCOMM workshop on Economics of
peer-to-peer systems, pages 138–143. ACM, 2005.

[103] T. Weiss. Grid computing gets push from Sun, IBM and Compaq. Computer World, Nov.
2001.

[104] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust for peer-to-peer electronic
communities. IEEE Trans. on Knowl. and Data Eng., 16(7):843–857, 2004.

[105] P. Yalagandula and M. Dahlin. A scalable distributed information management system. In
Proc. ACM SIGCOMM, pages 379–290, 2004.

[106] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement from
execution for byzantine fault tolerant services. In Proc. ACM SOSP, pages 253–267, 2003.

[107] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 22(1), January 2004.

103

[108] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Segment Tree: Support of range query
and cover query over DHT. In Proc. IPTPS, 2006.

[109] CoMon. http://comon.cs.princeton.edu/.

[110] The Gnutella protocol specification. http://www9.limewire.com/.

104

Author’s Biography

Ramsés Morales graduated Magna Cum Laude from Panamá’s Santa Maŕıa la Antigua University

in 1998, with a B.S.C.S. degree. After spending five years working as a Jazz musician, guitar

instructor, software engineer, and Rock musician, he became a Fulbright Scholar and started his

M.S.C.S. studies in 2003. Ramsés’s actual goal, however, was to achieve a PhD, reason why he

joined Prof. Indranil Gupta’s Distributed Protocols Research Group. Ramsés’s research interests

lie in large-scale self-organizing overlays, their unpredictable dynamism and their relation to

complex systems, how to apply biologically inspired algorithms in distributed systems design, and

how to improve scalability and ease of management of distributed systems running on clusters or

the Internet.

105

