

1

How to run the crawler to crawl PPLive channels?

1. Clarification
This is a stable version of our crawler and it works from 2006 to early 2008. Because PPLive is a
closed-source application and no technical details about this application is published, PPLive
protocol may also change in the future, so our crawler may not work perfectly in the future.
However, we believe the principle and approach of our crawler remain useful for research
community.

Our crawler can crawl multiple channels simultaneously. The crawler has two operations:
snapshot and partner discovery. Because a very large fraction of PPLive peers are behide NAT
and firewall, thus they are unresponsive. The crawler therefore suffers from this unresponsive
portion, especially the partner discovery operation because links between unresponsive nodes
may not be obtained.

To prepare and run the crawler, we need 2 machines: one is Windows to install PPLive client,
Wireshark to capture UDP packets; the other is Linux (with thread programming in C/C++) to run
the crawler after you capture the UDP packets. The crawler actually uses the captured packets in
text format and then translates the packets into hex format and sends to PPLive membership
servers and other peers attending the same channel with our PPLive client. When receiving our
crawler’s packets, membership servers and peers will return UDP packets back to our crawler,
which extracts and put crawled peers into a list and continues sending packets.

I recommend you to read this document entirely before you start. Please email me if you need
more information about the crawler. Good luck!

2. Software and Platform
The first step is installing Wireshark in Windows (http://www.wireshark.org/). This software is
free and it is used to capture packets between our Windows client and peers attending the same
channel. It also captures packets between our Windows client and PPLive membership servers
and PPLive channel management servers. Simply download and run the Wireshark binary file and
install.

3. Getting the channel ID

3.1. Configuring Wireshark
1. Run Wireshark
2. Go to the menu Capture/option and deselect the checkbox “Capture the packet in promiscuous
mode”
3. The next step is to create a filter to filter UDP packets sent (thus udp.srcport) by PPLive client
to PPLive servers and other peers as shown below. You can simply click on “Filter” and then edit
the expression or you can just enter the expression directly to the textbox.

2

How to know the UDP port of PPLive? There are several ways. First, you can open PPLive client,
right click on PPLive icon in the bottom right hand side of the Windows taskbar and select
“Parameter Settings”. Here, you see the UDP port.

Second, you can use a blank filter in Wireshark and click Apply, then you select menu
Capture/Interfaces and click on Start button of the interface you know PPLive client travel
through (remember to deselect the checkbox “Capture the packet in promiscuous mode” in
Capture/option menu).

3

After that, open PPLive client, select a channel. You will see all packets captured by Wireshark.
Click on a UDP packet sent by your PPLive client (you see the IP address of your client), you see
the port of PPLive client.

So far, you have a filter to filter out all UDP packets sent by your PPLive client to its peers and
PPLive servers when the PPLive client joins any channel. The next step is getting the channel ID
to feed the crawler, which will crawl and give us population of the channel.

3.2. Getting the channel ID
Each PPLive channel has an ID. To get the channel ID, perform following steps:

1. Run Wireshark and edit the filter as presented in previous section (if you already enter
the filter, you can select it from the drop-down menu). Then, select menu
Capture/Interfaces. Select Start button of the interface which PPLive client travels
through.

At the moment, because you have not started PPLive client, there should be no packet captured.

2. Now, you start your PPLive client. After the PPLive client starts, you can select a channel.

3. At the moment, Wireshark starts capturing UDP packets sent by your client.

4

In this image, you see the upper part is OICQ Protocol (line 184-198), an application-oriented
protocol of PPLive. From this image we know that the client first sends UDP packet to PPLive
membership servers to get a list of peers attending the client’s entering channel. After sending
UDP packets to servers and gets back the peer list, client starts sending UDP packets to peers to
ask for their neighbors to connect and get video content (starting from line 213). Notice that our
PPLive client send different packet formats to the servers and clients. Our crawler needs to
simulate this process by sending appropriate packets to servers to get peer list and then sending
appropriate packets to clients to get their neighbors. [One question may be: the crawler may just
keep sending the UDP packets to servers to ask for peers. However, PPLive is closed-source, we
do not know how the servers return the peer list to a client. So, we need to span the network to get
peers ourselves.]

To extract the correct packets to send to the servers and clients, we use a Perl script (below). So,
we need to export the UDP packets captured by Wireshark to a text file. After that, the Perl script
can extract patterns from this text file, and calls the crawler with these patterns as input
parameters.

Perform following steps to export packets to a text file (you definitely have other ways to get the
packet format and put into the crawler. This is just one way). This is the most tedious part ☺.

Because the PPLive client will send 2 packets to a peer A to ask for the A’s neighbors, we need to
select a line with the second packet. For example, here we choose 216 instead of 215 because line

5

216 is the second packet sent to 222.18.23.2. This selection is important for our Perl script to
extract correctly later - please notice that. Remember that in this image we have lines from 184 to
216 (from the beginning to the line 216)

Then, select menu “File/Save As” and enter the corresponding information.

6

Notice that we only capture UDP packets in a range. The type of file is K12 text file. You can
enter your channel name, for example you named your text file “channelA.txt”. Then click Save.
You are done this part.

4. Compile the crawler
The crawler will run on a Linux box with thread programming and C/C++. In 2006, I use Fedora
and in 2007 I use Ubuntu. I think our crawler will work on a Linux box in general.

Now, you need to change to the current directory of the crawler. Next, you copy file
“channelA.txt” from Windows to the directory “channelID” inside our release directory.

7

Because our crawler uses thread programming, we use the following to compile:

g++ -lpthread crawler.cpp –o crawler

In our release tar.gz file, “data” is the directory to store crawled data. “channelID” is the directory
to store text file we have in section 2 above. You need to copy the text file in section 2 to
“channelID” directory (by SSH for example). If you need to crawl multiple channels, simply put
multiple text files in this directory. The “server.lst” is a list of server IPs that I find from my
experiments. This list will change over time. So, you can use Wireshark and get IPs of PPLive
server (OICQ packets sent at the beginning by the PPLive Windows client) and update this list
accordingly. For example, if your PPLive client connects (by OICQ protocol) to some server,
which does not exist in the server.lst file, you can insert a new IP in this “server.lst” file.

Remember to set the write permission on “data” directory, read permission on “channelID”
directory and “server.lst” file so the crawler can read and write.

5. Run crawler
After everything is set, at the directory of crawler, simply run:

perl runCrawler.pl crawler server.lst 50

Here, “50” means number of maximum number of responses you want the crawler to receive
from remote peers. Because the crawler sends UDP requests in a round-robin fashion on the
crawled list of peers, when a peer answers more than 50 times, crawler will not take the
subsequent answers of this peer. Usually, the crawler runs from 1 to 4 minutes, depending on
channel size, so 50 is a reasonable number. You can tune this value by go to the “peerElem.h”
and find “addPartner” method.

6. Contact
If you have any questions, please feel free to email me.
Long Vu
longvu2@uiuc.edu
Homepage: http://cairo.cs.uiuc.edu/~longvu2

