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Abstract

This thesis presents new techniques that exploit system diversity within a particular class

of peer-to-peer publish-subscribe systems. We show that by directly addressing interest

and network diversity as a first class design principle, the scale and performance of such

systems can be improved.

This thesis makes four major contributions. Firstly, we present Confluence, a system

that significantly reduces the time to transfer large files from multiple publishers (sources)

to a single subscriber (sink node) as compared to the direct transfer strategy. Confluence

lets scientists rapidly collect logs from either multiple PlanetLab hosts or multi-site cloud

computing infrastructures. It uses a novel source-2-source (s2s) overlay to speed up the

transfer of file blocks towards the sink. Intuitively, the s2s overlay facilitates a source

node (with a congested path to the sink) to utilize other source nodes as intermediaries

for routing file blocks to the sink. Concretely, our approach first poses the problem as a

variant of flow optimization among the source nodes. This captures the spatial diversity in

bandwidth. We provide a theoretically optimal solution to this problem. Next, we augment

this static solution with on-the-fly recomputation. This helps us exploit temporal diversity

in bandwidth. Using Confluence, with 25 source nodes in a PlanetLab-like environment,

80% of nodes see a reduction in transfer time of at least 20% over the direct transfer strategy.

Our second system, Rappel, is a peer-to-peer delivery mechanism for RSS feeds. Rappel

is the first subject-based publish-subscribe system to be noiseless, be truly peer-to-peer, and

perform soft real-time dissemination of messages. Noiselessness implies that a subscriber

never receives messages for feeds that it is not subscribed to, and is important because it

improves fairness: the load imposed by the system on each participating node is proportional

to the node’s demands from the system. Rappel exploits interest and network diversity
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via the use of periodic utility computations, wherein the utility of a peer (“friend”) is

derived using Bloom filters and network coordinates. Bloom filters succinctly capture the

subscription interest of a node, whereas network coordinates help capture the network

location of a node. Via push-pull gossip, a node seeks to find a set of friends that provide

good subscription coverage while being in close network proximity. By having peers in close

network proximity, messages are disseminated with very low latency.

The third contribution of this thesis is the Realistic Application-level Network Simula-

tion (RANS) framework. This is motivated by two observations. Firstly, system deployment

is a labor-intensive exercise, and thus, limited in scale. For instance, PlanetLab, a large

wide-area experimental network testbed, usually only has about 400 accessible nodes at

any given moment. Secondly, due to the presence of extrinsic interferences, experiments

are not replayable. Simulations provide an acceptable solution to these problems, however,

they often fail to mimic realistic network conditions. In contrast to these two approaches,

the RANS framework provides a modular programming interface that can be leveraged to

produce both realistic simulation results and a ready-to-deploy sockets binary. Our main

contributions are in (1) developing a realistic and reusable selective granularity discrete-

event simulator for PlanetLab, and (2) showing that the results generated by the RANS

simulation framework closely match the results obtained by performing the same experi-

ments on a PlanetLab deployment.

Fourthly, the systems described in this thesis have been comprehensively evaluated via

both PlanetLab deployment and simulation. Our deployments used up to 400 Planet-

Lab servers world-wide. Our largest simulations model 10, 000 nodes. Our experimental

methodology is constructed using an extensive amount of real-world traces. For instance,

to evaluate Rappel using realistic user subscriptions, we gathered the subscription profiles

of 1.8 million LiveJournal users over six months. The evaluation presented in this thesis

also makes use of the following previously collected traces: Internet topology, end-to-end

latency fluctuations between PlanetLab nodes, bandwidth availability between PlanetLab

nodes, and end user churn observed in peer-to-peer file sharing applications.
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Chapter 1

Introduction

With the continued growth of the Internet, large-scale web and network services continue to

be deployed at an unprecedented rate. According to Alexa 500 [5], a list of the most popular

sites on the web, widely used services include: Internet search engines such as Google [35],

Yahoo! [101], and Microsoft Live [59], webmail services such as Hotmail [42], Gmail [33],

and Yahoo! Mail [104], social networking sites such as FaceBook [25] and MySpace [67],

video broadcasting services such as YouTube [105] and Hulu [43], instant messaging services

such as AIM [2], file sharing services such as BitTorrent [14], blogging platforms such as

LiveJournal [60], Twitter [92], TypePad [93], and Blogger [15]. Many of these services have

hundreds of millions of users. As a result, contemporary network services have pushed the

scale of distributed systems to levels not witnessed before.

We make two observations about these services next. Our work in this thesis expands on

both these observations. Firstly, many popular contemporary web and network services are

built atop publish-subscribe systems. For example, a social network such as FaceBook uses

an internal publish-subscribe system to keep a user informed about latest news from her

friends, a blogging platform such as Twitter exposes publish-subscribe as a core interface

to its users, media companies such as Hulu release latest TV episodes to their viewers via

RSS feeds [85], etc. A core reason for the growing popularity of publish-subscribe systems

is that they provide end users with a simple and easy-to-understand mechanism to gather

interesting information.

Secondly, to scale their offerings to a large audience, geographic distribution of infras-

tructure over multiple data-centers is popular among contemporary services. For instance,

content distribution networks [3, 13, 87] are used to cache popular documents near the

edges of the network. A common task of a system administrator managing a distributed
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infrastructure is to move large amounts of data across the network. For example, a feature

update may involve pushing new software to all the sites before being released to end users.

A second example involves the collection of log files generated at various sites to a central

clearing house, where the logs can be analyzed to generate various reports.

1.1 Exploiting Interest and Network Diversity

Distributed services that aim to provide high reliability, availability, performance, and scal-

ability must take steps to address adverse system diversity. In the context of this thesis,

system diversity arises from variations in either (1) resources or environment characteristics

available to end hosts (we focus on a subset – network diversity), or (2) requirements of

individual end hosts themselves, usually arising due to end user demands (we focus on a

subset – interest diversity). It can be observed that system diversity may arise not only

due to the variations at different end hosts (spatial system diversity), but also due to to

the variations at the same end host at different times (temporal system diversity). Besides

network diversity and interest diversity, other types of system diversity also exist, e.g.,

platform diversity, workload diversity, and availability diversity. We discuss these below.

• Network diversity arises due the the unpredictable nature of the underlying wide-area

network. It includes the temporal and spatial fluctuations of available bandwidth, the

fluctuation in end-to-end latencies, packet loss rates, temporary outages in connectiv-

ity, etc.

• Interest diversity occurs due to differences in end user behavior. An example of

interest diversity is the subscription heterogeneity arising from the varied interests of

end users within publish-subscribe systems, e.g., RSS feeds.

• Platform diversity arises due to the differences in the makeup of the software and

hardware components of participating end hosts. For instance, a web service must

support a wide assortment of popular browsers, a grid computing service composed

of multiple sites must leverage the differences in hardware capacities, and distributed
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application are often implemented using different technologies, i.e., operating systems,

programming languages, etc.

• Workload diversity occurs due to time zone differences, differences in behavior of end

users at work and home, viral spread of popular content, etc.

• Other forms of diversity include availability diversity, which arises due to the differ-

ences in the accessibility of participating end hosts. Availability of a host depends

on its network connectivity, end user participation, reliability of its hardware and

software platform, amongst other things. As a result, the system population changes

continuously. This is known as network churn. It can be observed that availability di-

versity is dependent on other forms of diversity, including network diversity, platform

diversity, and interest diversity. It is categorized separately since many distributed

applications are designed with certain assumptions about the availability of end hosts,

and as such, the particular reasons for any end host down time are orthogonal.

This thesis presents new techniques that leverage and exploit interest and network diver-

sity for substantial gain in performance of particular classes of publish-subscribe systems.

Note that, under reasonable assumptions, the systems presented in this thesis are capa-

ble of handling platform diversity, availability diversity, and reasonable workload diversity.

However, the novel contributions of this thesis are directed at the first two kinds of sys-

tem diversity; the last types mentioned have already been the focus of previous research,

e.g., [48, 61, 73, 80, 106].

1.2 Advancing Publish-Subscribe Delivery

Mechanisms

We provide an overview of publish-subscribe systems in Chapter 2, where we categorize

publish-subscribe systems via multiple taxonomies. One may broadly categorize publish-

subscribe delivery mechanisms into the following four paradigms:

3



• Unicast (“1-to-1”): Systems using the unicast delivery mechanism rely on the direct IP

network route from the publisher to the subscriber to disseminate messages. The key

property of this paradigm is simplicity and ease-of-use, as opposed to optimizing for

network efficiency or message dissemination speed. A unicast based publish-subscribe

system permits a publisher to have multiple subscribers, however, the message de-

livery mechanism does not seek to exploit any commonalities in network routes to

the subscribers. RSS feeds, one of the most popular subject-based publish-subscribe

systems, fall within this paradigm based on the original specifications [85].

• Single Source Multicast (“1-to-n”): Multicast systems aim to exploit route overlap

between subscribers to a given publisher. Multicast techniques reduce the network

load, the message dissemination latency, or a combination of both. Multicast systems

have been implemented at both the network layer and at the application layer.

• Convergecast (“n-to-1”): Convergecast is applicable in scenarios where data needs

to collected from multiple nodes (publishers) to a single node (subscriber). In this

paradigm, participating nodes collaborate with one another to route data towards the

subscriber in a more intelligent manner than mere unicasting. A form of convergecast,

in-network data aggregation, is widely used within wireless sensor networks to to

reduce the cost of communication [26]. However, in this thesis, we use convergecast

mechanisms for lossless data collection on wide-area networks.

• General Purpose Multicast (“m-to-n”): A general purpose publish-subscribe system,

with an arbitrary number of publishers, may be constructed as a collection of multiple

independent single source multicast components. However, more advanced delivery

mechanisms, such as group-based communication systems, exploit the presence of

multiple publishers (groups) to improve the structures used for message dissemination.

The last two paradigms (convergecast and general purpose multicast) are the focus of

this thesis; the first two paradigms (unicast and single source multicast) are not. Firstly,

despite their inefficiency, unicast-based delivery mechanisms remain popular due to their

simplicity. There is a lack of opportunity to optimize within this space without substantially
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changing the delivery mechanism. Secondly, multicast-based delivery mechanisms have been

very well studied [41, 103].

In this thesis, we choose to focus on the convergecast and general purpose multicast

paradigms because (1) these two paradigms remain the least explored of the lot with respect

to system diversity, and (2) these paradigms are most relevant in today’s computing.

With the rise of data-intensive infrastructures such as PlanetLab [75], grid computing,

and cloud computing, large amounts of data often need to be collected from numerous

remote sites to a central clearing house. A typical scenario has multiple publishers and

a single subscriber. Individual files can range from a few megabytes (MBs) to tens of

gigabytes (GBs) in size. We show that by exploiting the temporal and spatial diversity

in end-to-end bandwidth availabilities between participants, we can design more efficient

convergecast systems that significantly reduce the time to collect such files.

Today’s default mechanism for delivering RSS feeds is based on the unicasting mecha-

nism. This is grossly inefficient, and thus, we aim to provide a more efficient replacement.

Systems based on the general purpose multicast paradigm can achieve high efficiency in

a multi-publisher multi-subscriber universe. We show that by exploiting interest locality

of subscribers (i.e., the naturally occurring correlation of subscription interest across end

users), we can develop efficient multi-publisher multi-subscriber systems.

1.3 Thesis Contributions

This thesis presents new techniques that exploit system diversity within a particular class

of peer-to-peer publish-subscribe systems. We show that by directly addressing interest and

network diversity as a first class design principle, the scale and performance of such systems

can be improved. In accordance with this objective, we make four major contributions in

this thesis:

• Our first system, Confluence, significantly reduces the time to transfer large files

from multiple publishers (sources) to a single subscriber (sink node). A deployment

of Confluence can be used by scientists to rapidly collect logs from either multiple
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PlanetLab hosts or multi-site cloud computing infrastructures. Confluence uses a

novel source-2-source (s2s) overlay to speed up the transfer of file blocks towards the

sink. Intuitively, the s2s overlay facilitates a source node (with a congested path to

the sink) to utilize other source nodes as intermediaries for routing file blocks to the

sink. Concretely, our approach first poses the problem as a variant of flow optimization

among the source nodes. This captures the spatial diversity in bandwidth. We provide

a theoretically optimal solution to this problem. Next, we augment this static solution

with on-the-fly recomputation. This helps us exploit temporal diversity in bandwidth.

• Secondly, we present Rappel, which is the first subject-based publish-subscribe sys-

tem to be noiseless, be truly peer-to-peer, and provide soft real-time dissemination

of messages. Rappel exploits interest and network diversity via the use of periodic

utility computations, wherein the utility of a peer (“friend”) is derived using Bloom

filters [16] and network coordinates [23]. Bloom filters succinctly capture the sub-

scription interest of a node, whereas network coordinates help capture the network

location of a node. Via push-pull gossip, a node seeks to find a set of friends that

provide good subscription coverage while being in close network proximity. High sub-

scription coverage allows nodes subscribing to numerous subjects to receive relevant

messages via far fewer number of peers than subjects. Further, by having peers in

close network proximity, messages are disseminated with very low latency.

• The third contribution of this thesis is the Realistic Application-level Network Sim-

ulation (RANS) framework. This is motivated by two observations. Firstly, system

deployment is a labor-intensive exercise, and thus, limited in scale. For instance,

PlanetLab, a large wide-area experimental network testbed, usually only has about

400 accessible nodes at any given moment. Secondly, due to the presence of extrinsic

interferences, experiments are not replayable. Simulations provide an acceptable solu-

tion to these problems, however, they often fail to mimic realistic network conditions.

In contrast to these two approaches, the RANS framework provides a modular pro-

gramming interface that can be leveraged to produce both realistic simulation results

and a ready-to-deploy sockets binary. Our main contributions are in (1) developing
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a realistic and reusable selective granularity discrete-event simulator for PlanetLab,

and (2) showing that the results generated by the RANS simulation framework closely

match the results obtained by performing the same experiments on a PlanetLab de-

ployment.

• Fourthly, the systems described in this thesis have been comprehensively evaluated

via both PlanetLab deployment and simulation. Our deployments used up to 400

PlanetLab servers world-wide. Our largest simulations model 10, 000 nodes. Our

experimental methodology is constructed using an extensive amount of real-world

traces. For instance, to evaluate Rappel using realistic user subscriptions, we gathered

the subscription profiles of 1.8 million LiveJournal [60] users over six months. The

evaluation presented in this thesis also makes use of the following previously collected

traces: Internet topology [107], end-to-end latency fluctuations between PlanetLab

nodes [52], bandwidth availability between PlanetLab nodes [102], and end user churn

observed in peer-to-peer file sharing applications [9].

We clarify that this thesis does not focus on security primitives but rather on exploring

new performance-related designs for publish-subscribe systems.

1.4 Thesis Organization

The rest of the thesis is organized as follows: an overview of publish-subscribe systems is

provided in Chapter 2. Thereafter, Chapter 3 discusses the design of Confluence, a service

that aims to provide lossless data collection from multiple sources to a single sink. This

service can be used within multi-site cloud computing infrastructures or network testbeds

such as PlanetLab. In Chapter 4, we describe Rappel– a system that exploits subscription

heterogeneity and network locality to construct a lightweight overlay for RSS dissemina-

tion. The Realistic Application-level Network Simulation (RANS) framework is discussed

in Chapter 5. In Chapter 6, we present the results of our deployment of Rappel atop

PlanetLab [75], and validate the ability of the RANS framework to mimic realistic network

conditions via simulations. In the same chapter, we discuss the performance of Rappel via
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many large-scale simulations. In Chapter 7, we discuss the results of various experiments

that characterize Confluence. Lastly, in Chapter 8, we present our concluding remarks.
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Chapter 2

An Overview of Publish-Subscribe
Systems

In this chapter, we provide an overview of the various types of publish-subscribe systems.

We provide taxonomies of publish-subscribe systems based on their most important proper-

ties: the subscription model, the system architecture, and the delivery mechanism. Others

have provided additional taxonomies, including ones based security and privacy [8, 58].

Note that this chapter focuses on a high-level view of publish-subscribe systems – a dis-

cussion of works more closely related to the systems presented in this thesis appear within

those chapters.

2.1 Subscription Models

There are two broad categories of subscription models for publish-subscribe systems: subject-

based systems and content-based systems. Subject-based systems are also commonly re-

ferred to as topic-based systems.

In subject-based systems, subscribers generally subscribe to a topic, channel, or group.

A sequence of one or more keywords uniquely identifies each subject. Whenever an autho-

rized publisher posts a new message relating to a given subject, the message is disseminated

to each subscriber to that particular subject. A user may subscribe to multiple subjects.

For example, an investor maybe interested in getting the latest prices of all the stocks she

holds in her portfolio. In such a setting, each stock may be a separate subject, with price

changes continuously sent to subscribers. Some of the more renowned subject-based publish-

subscribe systems include Scribe [19], Bayeux [109], SpiderCast [21], and FeedTree [86].

Content-based systems differ from subject-based systems in that message delivery is

determined on a per-message basis. Subscribers provide a predicate, and only messages
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which match the predicate are delivered to them. A sample predicate for a stock maybe:

“publicly traded fortune 500 companies whose stock has changed more than 1% in the

current trading session”. In essence, content-based systems allow for greater flexibility

than subject-based systems, at the expense of greater burden on the underlying system.

Within this category, due to the rising adoption of smartphones with ubiquitous network

connectivity, a whole new generation of location-aware mobile applications are predicted to

come alive in the near future. It is likely that many such services would be implemented atop

location-aware content-based publish-subscribe systems. Popular content-based publish-

subscribe systems include Gryphon [10], Siena [17], and Sub-2-Sub [97].

2.2 System Architectures

The architecture of publish-subscribe systems can be classified into two general categories:

client-server and peer-to-peer.

In the simplest client-server setup, an entity known as the broker receives messages from

the publishers, processes them, and forwards them to the right subscribers. As a single

server acting as the broker limits scalability, many solutions use multiple servers to achieve

scalability. This has been done in a multitude of ways: via hierarchical organization of

servers, via a peer-to-peer relation amongst the servers themselves, or via middleboxes suchs

as proxies and gateways. Publish-subscribe systems based on the client-server architecture

include Gryphon [10], Siena [17], RSS [85] (as commonly used today), Corona [77], and

Cobra [83].

In a peer-to-peer (p2p) architecture, every node is equally important as any other. A

node can be either a publisher, a subscriber, or both. Due to the nature of the p2p ar-

chitecture, the system can naturally tolerate multiple failures, providing high resiliency.

A well designed p2p system also scales well, as each additional publisher or subscriber

brings additional resources into the system. As participants in p2p systems are not under

the control of a single authority, this provides a technical challenge to solve issues relat-

ing to security and privacy, quality of service, protocol upgrades, and connectivity (i.e.,
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penetrating middle boxes), user churn, etc. However, p2p architectures remain popular

because of the great economic advantage over client-server systems: they provide a low-

cost publishing medium, which even upstart publishers can take advantage of. Scribe [19],

Splitstream [18], Bayeux [109], Bullet [51], Sub-2-Sub [97], and FeedTree [86] are examples

of publish-subscribe systems based on the peer-to-peer architecture.

2.3 Delivery Mechanisms

The delivery mechanisms of publish-subscribe systems can be broadly split under the fol-

lowing four categories: unicast based systems, single source multicast based systems, con-

vergecast based systems, and general multicast based systems.

Note that messages can be delivered to subscribers via either server push or via periodic

client pull. Server push may use fewer network resources for subscriptions that require a low

number of messages delivered. Additionally, server push may minimize the latency with

which a client receives a message. However, such advantages come with an overhead: a

membership protocol to keep the list of active subscribers up-to-date may need to be main-

tained. On the other hand, the periodic pull approach may use fewer network resources for

subscriptions which have a high rate of message publication, allowing multiple messages to

be delivered via a single, periodic pull. A pull based approach may also be more appropriate

for subscribers that can only need to get new messages on demand. Both approaches have

their advantages and disadvantages, and as such, many solutions also use a combination of

both push and pull.

2.3.1 Unicast

Within the publish-subscribe universe, the relation between a publisher and a subscriber

is the atomic relation upon which all systems are built. Unicast based publish-subscribe

systems rely on unicast delivery mechanisms to send messages from the publisher to a

subscriber. The key property of unicast based publish-subscribe systems is that they aim

for simplicity and ease-of-use, in opposition to focusing on optimizations that may improve
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the efficiency or speed of message delivery. To clarify further, a unicast based publish-

subscribe system permits a publisher to have multiple subscribers, however, the message

delivery mechanism does not seek to exploit any commonalities in network routes to the

subscribers.

E-mail mailing lists fall are a classical example of unicast based publish-subscribe sys-

tems. For a mailing list, the mailing list agent contacts each and every subscriber’s mail

server individually to deliver the message to the subscribers’ mailboxes.

The most popular manner in which publish-subscribe paradigm is utilized today is

via the RSS [85] and Atom [7]. Both RSS and Atom are description languages for subject-

based publish-subscribe systems, and are popular due to their simplicity and accessibility. A

primary reason for their success is the widespread usage of HTTP as the transport protocol.

Piggybacking atop HTTP, the delivery of RSS and Atom messages are able to penetrate

most network middle boxes such as firewalls, proxies, and network address translation

(NAT) machines. Note that RSS aggregators (brokers) provide middle box optimizations

to reduce both the publisher and subscriber load. Such aggregators morph RSS’s native

unicast paradigm into a combination of a convergecast and multicast paradigms described

next.

2.3.2 Single Source Multicast

The next category of delivery mechanism optimizes the transportation of messages by col-

lectively looking at the subscriber population originating from a given publisher. This

strategy is popularly known as multicasting. The optimal multicast strategy is to deliver

a message simultaneously to a group of subscribers by using any underlying network link

at most once, creating copies of the message only at routers where underlying routes to

multiple subscribers separate.

IP multicast is multicasting built within the IP network infrastructure. For IP multicast,

messages are routed to subscribers via optimal distribution paths calculated in real-time

using a spanning tree algorithm. IP Multicast scales to a large receiver population by not

requiring senders to have membership information about the receivers. A sender simply
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sends the message to a special network address. The multicast tree construction is initiated

by network nodes which are close to the receivers or is receiver driven. This allows it to

scale to a large receiver population.

However, IP multicast has a scalability problem: routers are required to maintain a large

state. This inhibits applications that may require a large number of concurrent senders.

As such, the scalability of IP Multicast to millions of senders and millions of multicast

groups is not considered viable. Another drawback of IP multicast is that it is not reliable

– packets can be lost en route to the subscribers. To overcome this drawback, researchers

have developed reliable multicast protocols such as SRM [29] atop IP multicast to detect

losses and recover via retransmissions. However, IP multicast remains unreliable without

additional support.

For the reasons of scalability and reliability, and also reasons of economics, IP multicast

is not widely used on the commercial Internet. Nevertheless, IP multicast is popularly used

within enterprises, commercial stock exchanges, and multimedia content delivery networks.

A common use of IP multicast in the enterprise is for IPTV applications such as distance

learning and televised company meetings.

Since IP multicast is not widely available on the commercial Internet, as a function of

need, application-level multicast schemes have been designed and widely deployed. Application-

level multicast is sometimes also referred to as end system multicast, as such schemes can

function without additional support from routers or other network middle boxes.

Application-level multicast systems have designed using various distinct techniques.

Tree based systems build their dissemination path by focusing on network proximity. These

include: Narada [22] and RMTP [103]. Systems based on algorithms influenced by the

spread of epidemics include Bimodal Multicast [12], Lpbcast [24], and BAR Gossip [53].

These systems provide very high reliability at the expense of redundancy.

2.3.3 Convergecast

Convergecast can be thought of as being opposite of multicast. In this paradigm, there are

multiple publishers but only a single subscriber. Note that while message delivery from
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multiple publishers to a single subscriber may be sufficiently performed via the unicasting

paradigm, the convergecast paradigm has participating nodes collaborate with one another

to route blocks towards the subscriber in a more efficient manner. Common convergecast

techniques include route adaptation and in-network aggregation.

Convergecast is applicable in several distributed environments, that require central col-

lection of critical data from a small number of source nodes. For instance, convergecast is a

very popular paradigm to collect information at a base station within sensor networks [108].

Within wired environments, take for instance, a scientist running her data-intensive compu-

tation across a few tens of cloud computing sites, would want to collect the final computation

results from each of the site gateways, and have these available on her local server. The

challenges in solving this problem arise from the wide-area setting of source nodes, as well

as the enormous size of source files.

2.3.4 General Purpose Multicast

General purpose multicast based publish-subscribe systems are designed to efficiently sup-

port an arbitrary number of publishers and an arbitrary number of subscribers. While such

systems can be built atop single-source multicast systems, they do not exploit the oppor-

tunities for optimizations that naturally occurs across multiple overlapping subscribers and

publishers.

The first class of systems aims to specifically exploit network diversity across multiple

publishers and subscribers. These system takes into account network locality, but not

interest locality. For instance, multimedia streaming systems such as Anysee [55] use the

notion of inter-overlay optimizations, which require a host to relay messages to other groups

of which it is not a part of. A host maybe required to do this because it may provide better

connectivity than a node that is part of the group. Relatedly, systems relying on structured

peer-to-peer (p2p) overlay networks include Scribe [19] and Splitstream [18]. These systems

are built atop an underlying DHT such as Pastry [84].

The second class of systems optimize across overlapping subscriber interest. The natural

clustering of human interests has been observed in a multitude of studies [30, 39, 88]. Using
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the inherent interest correlation between users’ interest to build efficient dissemination

systems was previously used by Chand et al. [20] for creating unstructured content-based

publish-subscribe networks. Their approach is to link peers with similar interests, according

to some proximity function. The constructed overlay allows probabilistic broadcast within

some semantic interest group. On the other hand, the SpiderCast subject-based publish-

subscribe system [21] uses interest correlation to form sets of connected random graphs for

each topic, with the primary goal of aggregating links for multiple such graphs between

peers by leveraging the interest proximity of peers (i.e., to reduce nodes’ degrees).
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Chapter 3

Confluence: A System for Lossless
Multi-Source Data Collection

In this chapter, we present Confluence, a system for efficiently transferring large files from

multiple publishers (sources) to a single subscriber (sink node). Confluence uses a novel

source-2-source (s2s) overlay that explicitly measures and exploits spatial diversity in avail-

able bandwidth.

This chapter is organized as follows: in Section 3.1, we introduce the problem setting

and present a motivating example. Section 3.2 covers related work. Section 3.3 introduces

our problem model and theoretical solution. Lastly, in Section 3.4, we present our system

design. Note that a thorough evaluation of Confluence, including a comparison with existing

direct transfer mechanisms, is presented in Chapter 7.

3.1 Introduction

Several distributed environments perform central collection of critical and raw data from

a small number of source nodes. For instance, a scientist running her data-intensive com-

putation across multiple cloud or grid computing sites, would want to collect the final

computation results from each of the site gateways, and have these available on her local

server. Another example is a multi-site multimedia tele-immersive setup (e.g., [100]) which

typically involves fewer than 10 sites. Each site gateway maintains a video transcript. After

the teleconference, a site may collect all the transcripts for archiving and replaying videos.

A final example is researchers who deploy and debug prototypes of their distributed systems

within small clusters (e.g., a small PlanetLab slice) before moving it to large-scale deploy-

ment. They need to periodically collect event logs generated at these hosts to a single sink

node, for offline analysis such as debugging and profiling.
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All the above settings are characterized by the small number of source nodes involved,

each with its unique file, and the single sink node to which these files need to be down-

loaded. Another common characteristic is the periodic collection of new data logs that are

continuously produced at one or more nodes, i.e., for an always-on service or after execu-

tion of another event. The scenarios defined above are thus analogous to a subject-based

multi-publisher single-subscriber systems: the source nodes are the publishers and the sink

node is the subscriber.

Currently, researchers commonly use the unicast-based “Direct Transfer” strategy of

initiating direct and simultaneous transfers from each source to the sink. While Direct

Transfer offers good performance, the data flows on slow connections, i..e, sources nodes

with the least amount of available bandwidth to the sink node, lag behind the other, faster

data flows. As such, a select few lagged flows prolong the transfer process.

In this chapter, our goal is to minimize the total time required to transfer the necessary

files from the source nodes to the sink node. From here on, we refer to this as the “multi-

source single-sink data collection problem”.

Our solution is based on the key observation that the transfer process can be speeded

up by routing data via intermediate nodes. The diversity of connections amongst Internet

hosts has been widely observed [4, 6], and falls into two categories – spatial and temporal.

Spatial diversity refers to the fact that different links have different bandwidth availabilities,

whereas temporal diversity refers to the variation over time of the available bandwidth at

a single link. For instance, by randomly sampling sets of three nodes from the PlanetLab

snapshot provided (on April 8, 2008) by S3 [102], we observed that 37% of links can achieve

better connectivity by leveraging indirection via a third node.

Motivated by the above observation, we designed a new system called Confluence that

tackles the multi-source single-sink data collection problem. Confluence uses an adaptive

source-2-source (s2s) overlay in order to speed up the transfer of file blocks towards the

sink. Intuitively, the s2s overlay facilitates a source node (with a congested path to the

sink) to utilize other source nodes as intermediaries for routing file blocks to the sink.

Concretely, our approach first poses the problem as a variant of flow optimization among the
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Figure 3.1: A motivating example.

source nodes. This captures the spatial diversity in bandwidth. We provide a theoretically

optimal solution to this problem. Next, we augment this static solution with on-the-fly

recomputation. This helps us exploit temporal diversity in bandwidth.

Motivating Example Before delving into the details of Confluence, we use an example

to illustrate the benefits of exploiting spatial diversity of bandwidth via an s2s overlay. As

in Figure 3.1, consider a network with two sources x and y, and one sink t, in which the

capacity of x-t link is 1 MBps, the capacity of y-t link is 5 MBps, and the capacity of x− y

link is 2 MBps. For sake of simplicity, we assume that all links are symmetrical in uplink

and downlink connectivity. Further suppose x and y each hold a 1000 MB file. Our problem

entails transferring both these files to sink node t as rapidly as possible.

Direct transfers from x and y individually to t, assuming that they are fully uti-

lized (i.e., using both links simultaneously do not induce congestion at t), would take:

max
(

1000MB
5MBps , 1000MB

1MBps

)
= 1000 seconds. In comparison, if x and y collaborated with one

another, x may transfer its file to t via y. Using a sequential transfer process, where y

transfers its own file to t and then acts as an intermediary for x’s file, would take only

1000MB
5MBps + 1000MB

min(5MBps,2MBps) = 700 seconds. The completion time can be further reduced by

file splitting and pipelining. Using file splitting, x can transfer part of the file directly to t,

while the rest of x’s file can be transferred to t via y. Pipelining allows y to start receiving
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data from x, while it transfers it’s own file to t. Confluence generalizes these observations

to scenarios involving several sources.

Note that our approach is different from well-studied aggregation systems [26, 44] be-

cause we cannot use in-network aggregation – the raw data is required by the sink node.

However, files can be compressed at source nodes a priori, orthogonal to our file transfer

mechanism.

3.2 Related Work

Current solutions fail to efficiently address the multi-source single-sink data collection prob-

lem.

Distributing a popular file, e.g., a CD/DVD image of a recently released Linux dis-

tribution or a trailer to an upcoming Hollywood movie, to multiple hosts in a wide area

network is a fairly common content distribution problem. This file transfer problem is di-

ametrically opposite to the problem solved by Confluence, as a file is transferred from one

source site (“the content provider”) to multiple sinks (“end users”). This is a well-studied

problem, and a plethora of solutions [41] have been proposed to efficiently complete this

process. Relatedly, content distribution networks [1] efficiently provide static content to a

large numbers of users by moving data closer to the edge of the network [87]. The popular

peer-to-peer file sharing system, BitTorrent [14], can quickly disseminate popular files to

multiple sinks, starting from a single source. Other peer-to-peer systems (e.g., [95]) utilize

tree or mesh structures to allow users to enjoy near real-time multimedia streams. All of

the mentioned approaches increase efficiency by replicating content throughout the system.

In the multi-source single-sink data collection problem, explicit replication is not as directly

advantageous because only a single copy of the data needs to be collected at the sink node.

CoBlitz [72] successfully leverages close-by PlanetLab nodes as intermediaries to provide

speedier downloads of large files from a single source to a single sink. Confluence solves the

more general problem of downloading from multiple source nodes, using an approach firmly

grounded in theoretical formulation.
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Within sensor networks, numerous in-network data aggregation techniques have been

proposed to reduce the cost of communication [26, 44]. Data aggregation is also performed

at data centers to periodically monitor cluster-wide characteristics [49]. However such

data aggregation techniques may be lossy and cannot be used for on-demand lossless data

collection.

Many systems have been developed to boost data transfers over Long Fat Networks

(LFNs). Some approaches use multiple TCP connections per source-sink pair. For instance,

GridFTP uses parallel TCP connections [36] to speed up transfer of large files across node

pairs. Others have developed specialized TCP variants that excel atop LFNs, e.g., TCP

CUBIC [81], TCP-Illinois [57]. Such systems reside at the transport layer and are orthogonal

to any optimization techniques performed at the application layer. As such, Confluence can

leverage these and newer findings in this area with minimal changes.

Lastly, it should be noted that the primary premise of Confluence is based on the key

observation that the transfer process can be speeded up by routing data via intermediate

nodes. Previous work [4, 6, 27] has shown that exploring multiple routes can improve

connectivity and mitigate outages on the Internet.

3.3 Theoretical Formulation and Solution

In this section we formally model a time-invariant (i.e., static) network that captures the

spatial diversity of available bandwidth, and describe a theoretical solution for the multi-

source single-sink data collection problem. We also discuss the optimality and complexity

of our solution.

3.3.1 Graph Model

We model the networked system as a directed graph G = (V,E), where V represents the

set of end-nodes (derived from all the source hosts and the sink host) and E represents (a

subset of the) network paths.

A system with two hosts is modeled as shown in Figure 3.2. A host x is represented by
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Figure 3.2: A networked system of two nodes.

three vertices x+, x0, and x−. Vertex x0 represents the physical host itself, whereas vertices

x+ and x− model the host’s ISP. To support asymmetric ISP connectivity, edge (x+, x0)

models node x’s downlink capacity C+
x , and similarly edge (x0, x−) models node x’s uplink

capacity C−
x . This model is motivated by previous work that reports packet losses and

queuing delays within a backbone ISP are very low [71]. As such, this provides a good

balance between the complexity of modeling the underlying IP topology and the realities of

network conditions present at end-hosts. For any pair of nodes x, y, the network connection

from x to y is modeled as an edge (x−, y+) with capacity cxy, and the connection from y

to x is represented as edge (y−, x+) with capacity cyx. All the edges that describe network

capacity are collectively called network edges. The capacities are deduced via a combination

of “blasting” and lightweight probing [82] (see Section 3.4.2).

The model generalizes to multi-homed hosts. For each ISP-i that a host x is connected

to, we add two vertices xi+ and xi−. The incoming and outgoing network connections via

ISP-i respectively terminate at xi+ and originate from xi−. For example, a node x that is

multi-homed via two ISPs can be modeled using five vertices: x0, x1+, x1−, x2+, and x2−.

Four edges are added - for ISP-1: (x1+, x0) with capacity C1+
x , and (x0, x1−) with capacity

C1−
x ; for ISP-2: (x2+, x0) with capacity C2+

x , and (x0, x2−) with capacity C2−
x .
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Figure 3.3: The network graph G for a system of three nodes.

3.3.2 Solution

Given the static network model, we convert the multi-source single-sink data collection

problem into a series of maximum flow problems [28]. Informally, the maximum flow prob-

lem entails finding the largest feasible flow in the network from a given source to given sink.

The output of this centralized algorithm is a flow graph f∗ that denotes the rate at which

data must be transferred across network links, i.e., the optimal transfer plan. The process

of calculating the transfer plan requires the following steps (also see Figure 3.3):

1. Firstly, all the source nodes are linked to a new vertex s called the super-source (see

Figure 3.3(b)). The super-source is a conceptual node from which all data (“source

files”) originates. A source file at node x consisting of bx blocks is modeled by adding

an edge (s, x0) with capacity bx (also see Figure 3.3(b)). We call such edges data

edges. Using blocks rather than bytes as the atomic unit helps identify, i.e., name

and order, data efficiently. For consistency, the capacities of the network edges are

measured in blocks per second. Note that the total number of blocks originating from

the super-source is B =
∑

i bi.

2. Secondly, we apply the maximum flow algorithm to find the largest feasible flow from
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the super-source vertex s to a designated sink vertex t0 within an arbitrary timespan

T . This is done by translating graph G into a graph GT. The graph translation entails

multiplying the capacity of network edges by T – signifying the total amount of flow

possible through a network edge within time T . For example, the network edge with

capacity cxy (in G) becomes T · cxy (in GT ). If the maximum s→ t0 flow value equals

B =
∑

i bi, then the multi-source single-sink data collection can be completed within

time T . The resulting flow graph is denoted as fT . The time complexity of solving the

maximum flow problem using the push-relabel algorithm [34] is O(|V | · |E| · log( |V |2
|E| )).

3. Next, we find the smallest integer value of T for which the maximum s → t0 flow

value is B =
∑

i bi blocks. We denote this value as T ∗ (and its corresponding flow as

fT ∗). In [28], the theoretical upper bound on T is calculated as |V | · B · C, where C

is the largest network edge capacity. Hence T ∗ can be found using a binary search on

the range T ∈ [0, |V | ·B ·C] and computing the maximum s→ t0 flow in GT . Hence,

the total time complexity of the multi-source single-sink data collection problem is

O(log(|V |·B ·C)·|V |·|E|·log( |V |2
|E| )), where the first part is the complexity of the binary

search and the second part is the complexity of a single maximum flow computation.

4. Lastly, from fT ∗, we obtain the optimal transfer plan f∗ with transfer rates f∗
xy. Let

fT ∗
xy be the value assigned to network edge (x−, y+) by the optimal maximum flow

solution fT ∗ . This is the total number of blocks that must be sent from node x to

node y within timespan T ∗. As such, the optimal transfer rate is f∗
xy = fT∗

xy

T ∗ .

A reader may wonder why the graph translation (second step above) is required, when

a possible alternative is to simply calculate the number of blocks that can be transferred

from the super source to the sink node in a single time unit (G1), and then repeatedly use

that solution until total number of blocks B are transferred from the super source to the

sink node. Such a solution would work if the amount of data at source nodes was infinite

(e.g. a continuous stream of data) and our goal was simply transferring as much data as

possible.
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However, this strategy does not solve the problem of transferring files of finite size.

More concretely, by looking back at our motivating example (Figure 3.1), we illustrate a

scenario where this strategy does not work. In G1, we can transfer 1 MB from node x and

5 MB from node y, for a total of 6 MB to the sink node t. As we need to transfer a total

of 2000 MBs, based on G1, one may incorrectly extrapolate that the entire process can be

completed in 333.33 seconds at a sustained transfer rate of 6 MBps. However, this is not

the case: at t = 200 seconds, node y will have finished transferring its file contents to sink

node t, and the transfer rate of 6 MBps can no longer be sustained.

Lastly, we would like to point out that the empirical cost to solve this problem on a

modern machine (2.8 GHz Intel Xeon processor) is low – it is under 1 second with 500

participating nodes on a complete graph, i.e., modeling link capacities for any given node

pair. With 100 participating nodes, the computation completes in under 0.1 second on the

same machine.

3.4 System Design

The Confluence system is built atop the theoretical solution described in Section 3.3. We

first present the system assumptions in Section 3.4.1. Next, we detail the design of Con-

fluence. In order to address the temporal variation of bandwidth, Confluence uses three

mechanisms: (i) it periodically estimates bandwidth capacities to maintain the network

graph (Section 3.4.2); (ii) it creates an efficient transfer plan based on these measurements

and the theoretical solution (Section 3.4.3); and (iii) it adapts the transfer plan with chang-

ing network conditions, including leveraging partial replicas of files that are created during

the transfer (Section 3.4.4). For reference, Table 3.1 summarizes important notations we

use in the sections below.

3.4.1 System Assumptions

Before we delve into the design details of Confluence, we would like to present our assump-

tions about the system.
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Symbol Meaning Defined
C−

x ISP limit for egress traffic from node x § 3.3.1
C+

x ISP limit for ingress traffic to node x § 3.3.1
cxy Available bandwidth from x→ y § 3.3.1
bx Number of file blocks held at node x § 3.3.2
T ∗ Optimal transfer completion time § 3.3.2
f∗ Optimal transfer plan § 3.3.2
f∗

xy Optimal transfer rate from x→ y § 3.3.2
lxy Number of scheduled blocks (left) to be transferred from x→ y § 3.4.3
rxy Measured transfer rate from x→ y § 3.4.4.1
by
x Number of blocks held at node x that originated from node y § 3.4.4.3

Table 3.1: A summary of important notations used in this chapter.

Firstly, we assume that all files may be subdivided into blocks. This assumption allows

us to split a file into multiple pieces and send them towards the sink via different paths.

Secondly, all files (and hence file blocks) are unique and need to be collected at the sink node

losslessly. Thirdly, we assume that failures do not occur. If a source node fails, Confluence

provides no resiliency guarantees on the file blocks originating at that source node. This is

acceptable as the same problem exists with Direct Transfer.

3.4.2 Maintaining the Network Graph

The transfer plan is calculated and updated at a node called the coordinator. The coor-

dinator need not be a dedicated host – any one among the source nodes or the sink node

can act as the coordinator. The coordinator maintains the latest network graph G based

on reports from the end-nodes.

Each node in the system independently and periodically conducts measurements of the

available end-to-end bandwidth to other nodes in the system. It should be noted that

maintaining the state of all links, i.e., the complete graph G, is the most favorable scenario,

however, the following two factors need to be considered:

• Staleness: Available bandwidth is a temporal and always-changing property of the

network. Hence, repeated measurements are required.

• Cost: Actively measuring the available bandwidth expends some of the available
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bandwidth. Hence, the number of measurements should be minimized.

We adopt two design decisions that address both factors simultaneously. Firstly, we use

pathChirp [82] to measure available end-to-end bandwidth between nodes as it provides a

good balance between accuracy and measurement cost. Secondly, each node probes a small

set of k nodes where k � n (the number of nodes in the system).

By limiting the size of k, we can keep the measurements more frequent (avoiding stal-

eness), without requiring extra bandwidth (cost of measurement). For example, consider

a system with 50 nodes where bandwidth constrains a node to conducting a measurement

every 180 seconds. By using k = 49 and performing a round-robin measurement, each

link will be measured only once every 8820 seconds. However, if k = 10 the frequency of

measurement for each link is reduced to 180 seconds. Another beneficial side effect is that

only the k probed connections are used to calculate the optimal transfer plan f∗, thereby

reducing the computational complexity of the algorithm.

However, we cannot arbitrarily reduce k – with a limited number of peers, the available

bandwidth of a well-connected host may not be fully utilized. The value of k is acceptable

only as long as the k peers are able to saturate the downlink capacity of the bottleneck node

in the system, which is generally the sink node. In our experiments (detailed in Section 7.3),

we find that k = 10 provides the same performance as k = n−1 for a vast majority of cases

for a PlanetLab type network with up to 100 sources.

The coordinator maintains a global membership graph by assigning each node k random

peers, where the peer relationships are asymmetric. A given node periodically probes the

available bandwidth to each of its k peers in a round-robin manner. After each round

of measurements, the node reports the updated measurements to the coordinator. Upon

receiving new measurements, the coordinator updates the network graph G.

3.4.2.1 Measuring ISP Connectivity

A node’s connectivity to its ISP is unlikely to change significantly unless it is upgraded or

downgraded. As a result, this can be measured infrequently, e.g., once a day. Infrequent

measurement is further supported by the fact that a node can easily monitor and update
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its ISP connectivity estimates during actual file transfer. As a result, recomputation of

the transfer plan will quickly alleviate any suboptimalities (details are presented in Sec-

tion 3.4.4.1). We use an intuitive “blasting” technique to measure C+
x – a host’s downlink

capacity will be saturated if simultaneously blasted with a continuous stream of data by

numerous other hosts. Concretely, each node x independently (at random times, during

periods of system idleness) requests its peers to simultaneously blast it via a TCP stream

for 30 seconds. The value of C+
x is these blasts’ peak aggregate (averaged over 5 seconds).

Likewise, the node’s egress capacity C−
x can be gauged when the node simultaneously blasts

all of its peers.

Note that if a node is multi-homed, the connectivity provided by an ISP can be measured

via blasts to and from the subset of peers connected through that ISP. The traceroute

utility can help deduce the list of peers connected via a given ISP.

3.4.3 Transfer Plan Execution

Any node can become the designated sink when it wishes to retrieve files. It contacts the

coordinator with a list of source nodes and the corresponding file sizes at those nodes. Using

the network graph G (see Section 3.4.2) as input to the algorithm described in Section 3.3.2,

the coordinator calculates the optimal transfer plan f∗. Based on this calculation, the

coordinator sends specific transfer plan directives to nodes. The directive for a node x

contains the number of blocks node x must send to each peer node y. We use lxy to denote

this quantity.

The transfer plan directives are carried out via a push protocol: data is pushed from

a node to all of its receivers simultaneously (in parallel). The value of lxy is decremented

locally at node x on each successive block transmission to node y. When lxy reaches 0, node

x ceases to send blocks to node y. A source node can start pushing the blocks originating

from it as soon as it receives its directives. However, a few nodes may additionally act as

intermediate nodes (i.e., when
∑

i lxi > bx), either to provide a faster transfer route to the

sink or because a source node may not have direct overlay connectivity to the sink (due to

having only k peers). As such, intermediate nodes need to wait for blocks to “trickle in”
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from their senders before they can forward such blocks to their receivers. A newly arriving

block is pushed out to a receiver selected with probability equal to its share of the total

number of blocks remaining, i.e., Pr[y] = lxyP
i lxi

. When the sink has received all B =
∑

i bi

blocks, the transfer process is deemed complete.

3.4.4 Dynamic Adaptation

Both inter-flow competition and temporal variation in available bandwidth can adversely

affect the transfer plan. For example, if a flow terminating at the sink achieves a better

actual transfer rate than its designated optimal transfer rate, it may hog bandwidth away

from other flows also terminating at the sink, leading to an increase in total transfer time.

There are two approaches to combat this problem – either control the transfer rates, or

adapt the transfer plan to the changing network conditions.

We adopt the latter approach of periodically adapting the transfer plan. This is more

pragmatic since it has the ability to address both inter-flow competition and temporal

variation in network conditions. In fact, our initial take on the problem used the first

approach – flow control. Specifically, we maintained transfer rates using the cross-layered

TCP Flow Control System (FCS) described by Mehra et al [65], which adjusts advertised

TCP window of receivers to maintain the desired transfer rate. While FCS does better than

unadulterated TCP, we unfortunately found that it still degenerates away from the optimal

transfer plan for numerous scenarios due to its inability to adapt to changing network

conditions. Comparing the two approaches is left as a task for future work.

3.4.4.1 Periodic Recomputation

Periodic recomputation is the process of calculating the transfer plan with an updated

network graph G. This process is repeated periodically (every p seconds) until the data

collection task is completed. An added bonus of periodic recomputation is that it allows

the system to start with weaker estimates of the network graph G. This further justifies

using a cost effective (but sometimes inaccurate) tool such as pathChirp [82] to measure

available bandwidth.
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During an ongoing data collection, each node x continuously monitors the transfer rate

to each of its receivers (details presented in Section 7.1). We call this the measured rate rxy.

Every recomputation period, the coordinator sends a STATUS REQUEST message to each node

x. Node x responds with the number of blocks it currently holds (bx) and the measured

transfer rate (rxy) for all its peers y (recall from Section 3.3.2 that bx is initially the size of

the file at node x). As the coordinator receives the responses from the nodes, it updates

graph G’s data edges with the new bx values. It also updates G’s network edges based on

the network conditions. Concretely, if rxy ≥ f∗
xy · (1−slack), then cxy = max(cxy, rxy) else

cxy = max( cxy

2 , rxy). In other words, if the measured rate rxy is greater than the optimal

rate f∗
xy (given some slack), available bandwidth capacity cxy is updated if it improves upon

the previous estimate; otherwise, cxy is reduced by up to one-half to match the recently

measured rxy. Given that the network conditions are always changing, the slack is necessary

to avoid aggressively changing cxy. Our implementation uses a slack value of 5%. The else

clause limits the reduction of cxy to mitigate the effects of a one-time network event.

After the coordinator receives all the STATUS REQUEST responses, it calculates a new

transfer plan (see Section 3.4.3). Note that the structure of the overlay remains the same

(i.e., the same k peers are maintained), however, recomputation adapts the overlay workload

to meet the latest network observations.

3.4.4.2 State Inconsistency

In this section, we describe the two interesting issues that arise because the recomputed

transfer plan is based on an inconsistent view of the network state. This inconsistency

arises due to several reasons: (i) each node’s status is reported at a potentially different

time, since it is based on the time at which it received the STATUS REQUEST message; (ii) the

number of blocks bx reported to the coordinator includes neither the blocks still pending in

the outgoing TCP buffers, nor the packets that are in flight towards receivers, i.e., on the

network link; (iii) the network state continues to change while the transfer plan is being

calculated at the coordinator; (iv) the latency to deliver the new transfer plan to the nodes.

We tackle this inconsistency by separately handling the two issues it results in. The first
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issue is that the new transfer plan directive may overstate the number of blocks a node x

has. This is the common case as nodes continue to transfer blocks to their peers while the

new transfer plan is being computed. Thus, when a node x has transferred all its blocks, it

will needlessly wait for more blocks to trickle in. To avoid this, the sink sends an explicit

XFER COMPLETE message to all nodes when it has received all B =
∑

i bi source blocks. Note

that this issue (and its solution) does not slow down the transfer plan.

The second, less frequent issue is that the new transfer plan directive may understate

the number of blocks a node x has. This occurs when node x receives a large number of

packets right after it reported its status, i.e., due to TCP recovery of out-of-order packets

or due to a sudden increase in the incoming bandwidth. In this case, node x stops for-

warding packets when lxy reaches 0 for all peers y. The remaining blocks will effectively be

stranded until the coordinator learns of them and devises a transfer plan that includes them.

This will not happen until the next recomputation (at most p seconds away). To prevent

needless elongation of the transfer process, the coordinator sends a special Boolean flag

final computation along with the new transfer directives whenever the optimal transfer

time T ∗ ≤ p; signaling nodes to send any stranded blocks directly to the sink.

3.4.4.3 Recomputation with Block Replication

The reader may notice that a natural artifact of Confluence’s transfer process is that an

intermediate node x temporarily stores blocks originating from other source nodes. Our

implementation of Confluence uses a conservative purge-immediately policy at intermedi-

ate nodes: blocks are purged as soon as they are forwarded to and acknowledged by the

designated receiver. As a result, once a block leaves the origin node but before it reaches

the sink, there are exactly two copies of the block in the network. During recomputation,

we can use this naturally occurring replication to our advantage – by optimally choosing

which of the two replica-holding nodes should forward a given file block to the sink node.

Exploiting replication requires that each file block be tracked. Each block must be

tagged with a unique 2-tuple: the origination node and a sequence number (calculated

locally by the origin node). This allows node y to count the number of blocks originating
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Figure 3.4: A file edge with weight equal to bx
y is added during recomputation for

blocks held by node y that originated at node x.

from node x that it currently holds. Let bx
y be the number of blocks held by node y

originating from source node x. Note that
∑

i b
i
y = by at any given time. The list of origin

nodes (and the associated bx
y) is reported to the coordinator as part of the STATUS UPDATE

response.

At the coordinator, during recomputation, for each reported bx
y , the coordinator adds

a data-edge from node y0 to node x0 with weight equal to bx
y (see Figure 3.4). This step

allows the max-flow calculation to calculate the optimal solution with the option of routing

up to bx
y blocks from either node x0 or node y0 to the sink, because adding the (y0, x0)

data-edge does not effect the number of blocks held at the super source node s. If the new

recomputation flow fT ∗ uses the (y0, x0) data-edge with capacity α ≤ bx
y , it implies that

the new transfer plan now involves originating node x resending α blocks to the sink (via

some other route) that are also currently held at intermediate node y. This may happen if

the network conditions favor a route starting at node x instead of node y. To support this

re-routing, node x needs to know which of its blocks are held at y. Notice that node y may

have less than α blocks originating from node x by the time the new transfer plan directive

arrives at node x, i.e., bx
y < α. As such, node y iterates through its blocks and finds the

first min(bx
y , α) blocks originating from node x. Next, node y sends the sequence identifiers

of these blocks to node x in a REPLICATED BLOCKS message. Node x now is responsible for
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transferring these blocks to its receivers.

Please note that while our implementation uses the conservative purge-immediately

policy to minimize storage requirements at intermediate nodes, another implementation

may have intermediate nodes only lazily delete blocks based on storage needs. The latter

choice may provide opportunities for increased replication, and as a result, provide better

performance (at the expense of increased storage).

3.4.5 Overheads of Confluence

The design decisions of Confluence result in a few overheads not present with the Direct

Transfer strategy. Many of these overheads have already been discussed previously, and the

reader may have observed others. However, for completeness, we now present the list of the

major overheads of Confluence.

Firstly, the network state represented by network graph G may be inaccurate, stale,

or both. This could be due to both inaccuracies in the underlying measurement tool, and

the temporal diversity in available bandwidth. Secondly, the k peers of a node may not be

able to saturate capacity of the node. This may lead to suboptimal results, especially if the

sink’s downlink capacity is not being fully saturated by its k peers. Thirdly, Confluence

suffers a delayed start in contrast with Direct Transfer. Metadata about the network graph

G must be collected by the coordinator, the solution calculated, and the transfer plan

directives sent out to participating nodes before the process can start. Fourthly, due to

state inconsistency caused by periodic recomputation, the final set of blocks sent directly

to the coordinator may delay the finish, especially if there is abnormally high inconsistency.

Lastly, as Confluence needs to track each block to support replication, a small protocol

overhead is added to for each data block transferred.
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Chapter 4

Rappel: Using Locality to Improve
Fairness

In this chapter, we present Rappel – Rapid, Adaptive, Push-Pull of Electronic Feeds. Rap-

pel is the first publish-subscribe system to provide all of the following properties: (1)

noiseless update dissemination, (2) fast reception of updates at subscribing nodes, with low

stretch compared to direct reception from the publisher, and (3) low overhead at publisher

and subscriber nodes. We elaborate on these soon.

Rappel is a peer-to-peer delivery mechanism for RSS feeds [85], and supports an arbi-

trary number of publishers and subscribers. Rappel constructs its dissemination overlay by

exploiting the interest and network locality of its participants, which results in improved

speed and efficiency of message dissemination.

This chapter is organized as follows: in Section 4.1, we present the design objectives

and a synopsis of our approach. Section 4.2 covers related work. In Section 4.3 provides

an overview of Rappel components: the friendship overlay and the per-feed dissemination

trees, which are described in detail in Section 4.4 and Section 4.5 respectively. Lastly, we

present the process to bootstrap the Rappel system in Section 4.6. Note that a thorough

evaluation of Rappel is presented in Chapter 6.

4.1 Introduction

Syndicated feeds such as RSS [85] and Atom [7] are popularly used to expose content to

end users by web logs, wikis, news sites, online social networks, etc. In such systems, a

topic of interest is called a feed, e.g., an RSS news source. A feed has a single publisher,

which is a computer host that is the source of all updates for that feed. There is a set of

subscriber nodes (hosts) associated with each feed. These subscriber nodes desire to receive
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all the feed’s updates, including those generated when the subscriber was offline. Each node

corresponds to a user and may subscribe to multiple feeds.

In this section, we elaborate on our design objectives, the key intuition behind our

approach, and the research contributions made by Rappel.

4.1.1 Design Objectives

1. Zero Noise: We define noise as the receipt of any feed update at a node that it is

not subscribed to. Noiselessness is one of our goals because of its provides a desirable

property: fairness. Fairness implies that the overhead at each node will grow only as

a function of the number and nature of subscriptions at that node, and not due to

overall system behavior. Thus, Rappel aims to achieve zero noise.

2. Fast Update Dissemination: Simultaneously lowering the publisher overhead and

achieving zero noise might result in higher latencies to disseminate updates. Thus,

another goal of Rappel is to provide soft real-time behavior, whereby each update is

disseminated to all interested subscribers as rapidly as possible. Fast update dissem-

ination is necessary to support dissemination of live sports scores, stock trackers, live

blogging [92], etc. More concretely, we desire the update dissemination latency to

have a low stretch factor, i.e., be only a small factor greater than the direct IP route

from the publisher. A low stretch factor is especially useful in end-user satisfaction

for hosts that are “far” from the publisher.

3. Low Publisher and Subscriber Overhead: Overhead arises mostly from bandwidth,

and is of two kinds - control and data. The data bandwidth is used for receiving and

relaying the updates themselves, whereas control bandwidth is used for maintaining

overlay neighbors. A low and scalable overhead at the publisher translates to band-

width and resource savings, and thus a higher return on investment. For the system

to scale with the number of subscribers, the subscriber overhead needs to be low.
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Figure 4.1: The subscription traces of LiveJournal users (minimum of 5 subscrip-
tions) show that if we greedily select 6 best friends for each user (to maximize that
user’s coverage), the friends provide complete coverage for over 95% of users.

4.1.2 Our Approach

Rappel’s approach is to maintain a single collaborative control-plane overlay among all

nodes, and use this to build and maintain data dissemination trees for each feed. Within

the control-plane overlay, a Rappel node continuously aims to move closer towards its

“interest locality”.

Interest locality is related to the notion of coverage - two nodes that are subscribed to

the same feed are said to cover each other w.r.t. that feed. A system is said to show interest

locality if for each node x, a small set of “friend” nodes suffice to cover all of x’s subscribed-

to feeds. Interest locality arises naturally from the clustering of human interests [30, 39, 88].
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Supposing that each node can greedily select the k best friend nodes to maximize its own

coverage, interest locality can be observed amongst the users of LiveJournal [60] – a popular

multi-feed subscription platform. Figure 4.1 illustrates interest locality for 1000 randomly

selected nodes. The first plot shows the CDF of subscription coverage across nodes at

various values of k. Even with a low number of k = 6 best friends, complete feed coverage

is exhibited at 95% of the nodes. Further, the second plot shows that subscription coverage

does not degrade with increasing number of subscriptions.

4.2 Related Work

Current solutions fail to simultaneously support all the three properties we desire in a

subject-based publish-subscribe system: being truly peer-to-peer, being noiseless, and pro-

vide support for soft-real dissemination of messages. In this section, we discuss works that

provide at least some of our desired properties. We also discuss works that influence the

design of Rappel.

Application-Level Multicast Tree-based notification systems relying on structured p2p

overlay networks include Scribe [19] and Splitstream [18]. These approaches leverage the

underlying Pastry DHT [84], achieving low latency and stretch. However, they do not

ensure zero noise. In the Scribe tree, for example, inner nodes of the tree are likely to have

no interest in the given feed. However, in [19], a tree-collapsing algorithm is evaluated,

consisting of removing all nodes from a tree which are not explicitly subscribed to the tree.

Results show that the stress on both the nodes and on the network is divided by two.

This demonstrates that the noise has a significant impact on performance. Incrementally

modifying either Scribe or Splitstream to ensure zero noise significantly disrupts network

proximity properties provided by the DHT and is therefore not desirable.

Multicast trees such as Narada, SRM , RMTP, etc. [103] focus their attention on net-

work proximity at the expense of interest locality. Gossip-based application-level multicast

systems such as Bimodal Multicast [12], Lpbcast [24], and BAR Gossip [53] achieve good

reliability at the expense of increased bandwidth, although the latter can be lowered by con-
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sidering network proximity [38, 64]. However, the involvement of non-interested subscribers

in the dissemination leads to noise. Overlapping-group multicast has been addressed in tra-

ditional group-communication systems (see [11]), as well as gossip-based systems, e.g., [47],

but without looking at interest locality.

Content-Based Publish-Subscribe Systems Content-based publish-subscribe systems

such as Gryphon [10] or Sienna [17] rely on a backbone of brokers. While these systems

are able to support expressive subscriptions and some achieve zero noise at subscribers,

the brokers may be subjected to significant noise even when no interested subscribers are

connected to them. Net-X [79] is a proposed system that uses polynomial signatures to dis-

cover interest locality among user interests and data. However, the usage of brokers takes it

away from the peer-to-peer paradigm. Brokers filter messages on behalf of subscribers and

thus receive a large amount of messages of non-interest. Sub-2-Sub [97] is a collaborative

content-based p2p publish-subscribe system that, like Rappel, exploits interest locality but

does not address network locality and may incur high stretch factors.

The authors of [89] propose to build content-based filtering atop Scribe [19]. Their

approach is to use automatic schema detection to map content-based subscriptions onto a

set of topics. However, this approach suffers from false positives. Another approach for

supporting content-based publish-subscribe atop structured peer-to-peer networks [66] is

based on the division of a content-based publication space into recursively split publication

domains. Due to the underlying DHT substrate, nodes are often in charge of operations for

publications that they do not even subscribe to.

Using the inherent interest correlation between users’ interest to build efficient dis-

semination systems was previously used by Chand et al. [20] for creating unstructured

content-based publish and subscribe networks. The approach is to link peers with similar

interests, according to some proximity function. The constructed overlay allows probabilis-

tic broadcast within some semantic interest group. This broadcast may fail if the event

semantic domain does not correspond to a linked set of peers in the overlay. This restricts

the system usage to popular content and coarse filtering. More, the system incur a sig-

nificant noise ratio as nodes that lie on the boundaries of some semantic domain receive
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unexpected content, and within its boundaries nodes can receive an item multiple times.

The SpiderCast topic-based publish and subscribe system [21] uses interest correlation

to form sets of connected random graphs for each topic, with the primary goal of aggre-

gating links for multiple such graphs between peers by leveraging the interest proximity of

peers (i.e., to reduce nodes’ degrees). The authors however do not present how to create

and maintain the dissemination structures. While built using a similar idea to Rappel,

SpiderCast does not take into account physical proximity, but ensures noiselessness and

fairness. Moreover, the system relies on each node knowing either the entire network or a

large portion of it, raising scalability issues.

Decentralized RSS Dissemination A few recent systems have been specifically target-

ing RSS feeds such as Corona [77], Cobra [83], FeedTree [86] and LagOver [66]. Aggregators

such as Corona reduce the load on publishers by proxying on behalf of the subscribers. As

such, the publisher load simply shifts to the aggregator (albeit, nodes only issue a single

POLL request for all their subscriptions). However, the latency of update dissemination

depends on the polling frequency. Our rapid dissemination goals are somewhat in common

with that of cooperative polling approaches taken by Cobra. However, these proxy sys-

tems rely on intermediate infrastructures (third parties) and thus are not completely p2p

in nature. FeedTree and LagOver are the only other true peer-to-peer systems for RSS dis-

semination. However, as FeedTree is based on Scribe [19], it is not noiseless. Like Rappel,

one of the goals of LagOver is soft real-time dissemination of updates. However, LagOver

does not leverage the correlation between feed subscriptions, requiring nodes to contact the

publisher directly to join a feed.

Exploiting Locality Temporal and spatial locality of data access by processes has been

a motivation for designing caches in OSes [91]. Locality of Web access at each user is

exploited by local caches, and correlations in interest on Web content has led to the rise of

cooperative Web caches, e.g., [45]. Ideas from social networks have been used to improve

the performance of p2p systems, e.g., [63, 74]. Correlation in user interest has also been

used to improve performance of p2p resource discovery systems [39], as well as for content
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Figure 4.2: Architectural overview of Rappel: the building blocks, the friendship
overlay, and a per-feed dissemination tree.

delivery [99].

Distributed Membership Protocols Rappel’s friendship overlay (see Section 4.4) is in-

fluenced by the design of previous membership discovery protocols. This includes SCAMP [32],

Cyclon [96] and T-MAN [46], which construct overlay graphs either randomly or according

to a distance function. Further, Rappel’s use of a friends set and a candidates set bear

some similarities to the use of the inner and outer rings in the LOCKSS system [62], which

however did not discover interest and network locality.

4.3 Design Overview

In this section, we present an overview of Rappel, focusing on its components and building

blocks. An architectural overview is provided by Figure 4.2. Sections 4.4, 4.5, and 4.6 will

elaborate on the details.

4.3.1 System Assumptions

Before we delve into the design of Rappel, we would like to present our assumptions about

the system.

Firstly, for simplicity of exposition, our discussion assumes a single publisher (node) per

feed. Our model generalizes to multiple publishers per feed in a straightforward manner.
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In the generalization, each feed has a “master publisher”, which acts as the root node. All

other authorized publishers (i.e., secondary publishers) send their updates to the master

publisher, which disseminates the updates to the feed subscribers. Secondly, the design of

Rappel is based on the assumption that the updates from publishers are sporadic and small

in size. Thirdly, participants in Rappel are assumed to behave in an altruistic manner, in

accordance with the protocol specified. This is in line with our thesis-wide goal of focusing

on performance, in lieu of security. Fourthly, we assume that publisher nodes never fail,

however, subscriber nodes can fail (and rejoin) at any time and for any reason. Lastly,

subsciber nodes can subscribe to new feeds at any time, however, we assume that this is a

lower probability event that the node departing and rejoining the network.

4.3.2 Rappel Components

The design of Rappel is based on two major components.

• Rappel constructs a dissemination tree for each feed, wherein only the subscribers

of a particular feed join the tree. While a node could have joined the dissemination

overlay in a top-down manner by contacting the publisher, this would lead to high

join traffic at the publisher. Moreover, this also puts disproportionally high load

at subscribers closer to the root, especially in popular feeds. The join traffic also

increases with network churn. Churn has been observed to be as high as 25% per

hour in contemporary p2p systems [9].

To improve the reception latency of feed updates, the dissemination trees are main-

tained to continually reduce the stretch factor. In the face of network churn, a node

utilizes a periodic rejoin process to locate a new parent that improves its stretch fac-

tor. This results in the compaction of the tree and improved dissemination latency

for all its descendants (Section 4.5).

Dissemination trees are constructed using the control plane overlay, which we describe

next.

• To mitigate excessive and disproportional traffic due to joins, Rappel builds a proximity-
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aware “friendship” overlay. Each node seeks to find a set of nodes (“friends”) that are

both close in the network and provide good subscription coverage. Subscription cov-

erage refers to the percentage of node ni’s subscribed feeds that are in common with

at least one of ni’s friends. High subscription coverage allows nodes to rapidly join

the dissemination trees for a newly subscribed feed via friends. Having these friends

in close network proximity allows the joining node to integrate into the dissemination

tree without a drastic increase in the stretch factor. An added bonus of the friendship

overlay is that it allows a node with numerous subscriptions to join the dissemination

trees by contacting only a small set of highly effective friends. Rappel relies on gossip

to discover better friends. Using an utility-based approach, Rappel stays converged

to a good set of friends (Section 4.4).

4.3.3 Building Blocks

Rappel leverages two basic building blocks: (a) a network coordinate system that enables

estimation of the network proximity without repeated empirical measurements; and (b)

Bloom filters that aid in quick computation of the subscription overlap between nodes,

capturing interest locality.

Firstly, we use Vivaldi network coordinates [23] to estimate the network distance be-

tween nodes. Vivaldi maps nodes onto an n-dimensional Euclidean space so that inter-node

latencies can be estimated directly via the Euclidean distance between the nodes’ coordi-

nates. Vivaldi nodes compute and maintain their coordinates based on differences between

actual and predicted latencies.

Secondly, to represent each node’s subscription set, we use a Bloom filter [16]. A Bloom

filter compactly represents a large set of data using a bitmap in O(n) time, where n is the

number of keys. In Rappel, the Bloom filter for each node is created by first initializing the

bitmap to zeros, then using multiple hash functions to map the URL of each subscribed

feed to bits in the map (by setting the mapped bits to ‘1’). An inclusion test for a key (i.e.,

feed URL) can be performed in O(1) time by checking if the hash function mapped bits

are all ‘1’. As a result, Bloom filters are subject to false positives in the inclusion test for a
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key. Rappel’s design takes this into consideration and directly verifies the presence of the

key from the source node when necessary.

The size of the Bloom filter determines a trade-off between bandwidth and rate of false

positives. However, the rate of false positives is independent from the number of publishers

in the system. For a node’s Bloom filter, the false positive rate depends only on the number

of subscribed feeds. Given that, we use Bloom filters with 1, 024 bits and 3 different uniform

hash functions – this gives a false positive probability of 0.25% for a node subscribed to 50

feeds, 1.6% for 100 feeds, and 8.7% for 200 feeds. Since RSS subscription set sizes appear

to follow a Zipf-like distribution [56], we believe the above setting is reasonable. The loss of

accuracy for the few peers with large subscription sets (incurring a few more messages when

key verification fails) is largely compensated by the bandwidth saved at most peers.

4.4 The Rappel Friendship Overlay

In this section, we describe the algorithms used to build and maintain the interest and

network diversity-aware friendship overlay in Rappel. The friendship overlay will be lever-

aged to let a node quickly join dissemination trees of subscribed feeds. Rappel utilizes two

techniques to thread the building blocks (see Section 4.3.3) together. These techniques are:

(1) a utility function to calculate the proximity between any node pair, as a function of both

network distance and interest overlap, and (2) a gossip-based voting and audit mechanism

that enables a node to discover new friends. Our experiments find these methods are highly

effective in locating both interest and network locality in practice (Chapter 6).

Below, we describe the soft state stored at each node (Section 4.4.1), utility calculation of

the friends set (Section 4.4.2), the gossip protocol used to discover candidates for friendship

(Section 4.4.3), and improvement of the friends set via periodic audits (Section 4.4.4).

4.4.1 The Soft State

Each Rappel node maintains soft state in the form of three data structures: a friends set,

a candidates set, and a fans set. We define these below. The methods used to compose and
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maintain the soft state are described in Sections 4.4.3 and 4.4.4.

Friends Set The primary goal of the friends set is to provide maximum subscription

coverage for each node. A node ni maintains a set of friends FRIENDS(ni) containing nodes

with close proximity to itself. Each entry for a node in FRIENDS(ni) is stored as a four-tuple.

The four-tuple pointing to a friend nj consists of the IP address of nj (nj .address), its

network coordinate (nj .coord), its subscription Bloom filter (nj .Bloom), and the last time

ni heard from nj (nj .last refresh).

To maintain a low and fair control overhead due to the friendship overlay, we place an

upper bound α on the friends set size at any Rappel node, i.e., we require |FRIENDS(ni)| ≤ α.

Our experiments (in Section 6.2.3) reveal that in a network with up to 10000 nodes, a value

of α = 6 suffices. Due to interest locality (see Section 4.1), we believe that a low value of

α may work with larger networks as well.

Fans Set To allow a node the unilateral flexibility to improve its friends set, friend rela-

tionships are asymmetric. For example, a node ni subscribing to a large number of feeds

may be desired as a friend by node nj subscribing to a small subset of those feeds. While

the friendship benefits nj , it may not benefit ni. Hence a separate fans set is needed to

track and limit inverse friends relations. The fans set of node ni consists of all nodes nj

that have ni in their own friends set. We bound the “fanship” load at nodes such as ni by

limiting the number of fans, i.e., |FANS(ni)| ≤ 2 · α. Having a fans set that is twice as large

as the friends set provides the flexibility needed to construct the friendship overlay, while

preventing overload.

Candidates Set Each node ni also maintains a candidates set, denoted as CANDIDATES(ni).

The candidates set contains the nodes that may be audited for inclusion in the friends set.

Each entry therein pointing to a node nj is composed of a six-tuple. The first four entries

of this tuple are akin to a friends set entry - the IP address, the network coordinate, the

subscription Bloom filter, and the time last heard from. The last two entries help rank

the best candidates - they are number of votes for nj (nj .votes), and whether or not the
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candidate has been audited (nj .audited – a Boolean value). The last two values are used

for periodically auditing candidate nodes for inclusion in the friends set (Sections 4.4.3

and 4.4.4).

4.4.2 The Utility of a Friends Set

The friends of a node should provide the node with good subscription coverage while being in

close network proximity. In this section, we devise a mathematical function that attempts

to capture utility of both the interest and network proximity provided by nodes in the

friends set.

Given two nodes ni and nj , the utility of nj to ni should be derived from two components:

(i) the network distance; and (ii) the subscription overlap. The first can be computed using

the Euclidean distance between ni and nj in the network coordinate space, i.e., ||ni, nj ||.

The later can be derived using the intersection of ‘1’ bits between the two nodes’ Bloom

filters, i.e., |ni.Bloom∩nj .Bloom|. However, this may impose a “fanship overload” at nodes

subscribing to numerous feeds. Hence, we normalize the metric using the Jaccard index [90],

that is, by dividing it with the union of ‘1’ bits between the two nodes’ Bloom filters, i.e.,
|ni.Bloom ∩ nj .Bloom|
|ni.Bloom ∪ nj .Bloom|

.

More concretely, a prospective friend nj that is nearby in the network (low ||ni, nj ||)

should have a high utility as long as there is some subscription overlap. On the other hand,

a high subscription overlap (high
|ni.Bloom ∩ nj .Bloom|
|ni.Bloom ∪ nj .Bloom|

) should also have a high utility

as long as it is not too far in the network. As such, we use the following to calculate the

utility of nj to ni:

Utility(ni, nj) =
1

||ni, nj ||
× |ni.Bloom ∩ nj .Bloom|
|ni.Bloom ∪ nj .Bloom|

An Example To illustrate how the utility calculation is performed, we present a simple

example. Let there be two nodes: A and B. Node A subscribes to feeds f1, f2, f3, f4,

and f5, whereas node B subscribes to feeds: f1, f3, f5, and f7. Between the two nodes,

there are 3 shared feed subscriptions out a total of 6 feeds. As such, the overlap in the
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Utility(ni, F(ni)) =

X
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1
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·
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Figure 4.3: The utility of a friends set depends on the network- and interest prox-
imity, with a bonus for nodes that uniquely share common feed subscriptions with ni.
For brevity, FRIENDS(ni) and ni.Bloom are denoted by F(i) and ni.Blm respectively.

subscription interest of the two nodes is 0.5. This number is multiplied by the inverse of

their network distance, measured as the latency to send a message from node A to node

B. For instance, if node A and node B are on the same LAN, with a latency of 1 ms, their

utility value would be 500. However, if node A and node B were on different continents,

with a latency of 100 ms, their utility value would only be 5. Now, suppose there is another

node C, which subscribes to feeds f2, f4, and f6. Between node A and node C, they share

2 feed subscriptions out of a total 6 feeds. Hence, the interest overlap between node A and

node C is only 0.33. If both node B and node C were equidistant from node A, then node

B would provide higher utility to node A than node C, given the higher interest overlap.

To generalize the utility function to the entire friend sets at node ni, a special bonus

is given to friends that uniquely share subscription with a node. This may help find dis-

semination trees for less popular feeds. Concretely, a higher utility is given to a friend that

uniquely matches at least one bit in the Bloom filter of ni. In the previous example, if both

nodes B and C were in the friends set of node A, node B uniquely covers feeds f3 and f5,

whereas node C uniquely covers feed f4.

The comprehensive utility function is shown in Figure 4.3. In order to better understand

the benefits of the utility function, Section 6.2.3 will separately evaluate the interest locality

and network distance components.

4.4.3 Maintenance of Candidates Set via Gossip

A node ni would want to have only online node in its candidates set; further only the

“best” available nodes should appear in the candidates set. As such, a node ni continually
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monitors the liveness of its friend nj via periodic ping requests. A liveness check is a

lightweight operation and hence nodes perform it often: once every 30 seconds. To indicate

liveness, a pinged node sends back an acknowledgment. As friends and fans are inverse

relations, node nj implicitly uses the ping request from ni to confirm the liveness of ni.

A friend failing to reply within a timeout period is deemed as failed. We use a timeout

value of 15 seconds, as median end-to-end node latencies on the Internet are two orders

of magnitude smaller. Similarly, if a node does not receive a new ping request from a fan

within the keep-alive period plus the timeout interval, the fan is deemed as failed. A failed

friend causes ni to seek a replacement friend, as described in Section 4.4.4. On the other

hand, a failed fan is merely removed from the fans set (i.e., no need to seek a replacement).

We observe that the ping-ack mechanism can also be leveraged as a gossip protocol in

order to evolve the candidates set. By piggybacking the friends set with every ping-ack

response, nodes that are up to two hops away in friendship can be discovered and added to

the candidates set. These nodes include friends of friends, as well as friends of fans: these

represent the collection of nodes in close network and interest proximity. Further, updates

in the two-hop neighborhood are captured by the very next ping-ack.

Whenever a new remote node nj is encountered, an entry for nj is created in the

candidates set with nj .audited set to false, nj .votes set to 1, and nj .last refresh set to

the current time. To reduce bandwidth overhead, the Bloom filter and network coordinates

for this node are not fetched at this time. Whenever nj is heard from again, nj .votes is

incremented by 1 and nj .last refresh is updated. Stated differently, a vote is implicitly

cast for friends two-hops away with each ping-ack message. This gives higher weight (based

on vote count) to candidates that are present on more than one “nearby” friend sets, i.e.,

such candidates are likely to have better network and interest proximity.

Note that Rappel does not ping candidate nodes - the candidate set is kept up to date

by evicting inactive candidates. Firstly, the candidate set is restricted to a fixed size. Once

this limit is saturated, we use an eviction policy that eliminates the least recently heard-

from node (akin to LRU eviction). The maximum size of the candidate set is (3 ·α2 +2 ·α),

in order to capture all friends two hops away even if there is no overlap amongst them. This
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ni::Improve-Friend-Set (Candidate nc)
begin

base← highest← Utility(ni, FRIENDS(ni));
foreach nj ∈ CANDIDATES(ni) do

current← Utility(ni, FRIENDS(ni)− nj ∪ nc);
if current > highest then

// Evicting nj increases utility
highest← current;
victim← nj ;

if highest > (1 + δ)× base then
// Pending positive ACK of friendship request from nj

FRIENDS(ni)← FRIENDS(ni)− victim ∪ nc;
ni::Reset-Audit-Flags

end

Figure 4.4: Periodic auditing of a candidate node. For brevity, we omit the
friendship request sent to nc.

includes friends of friends (α2), friends of fans (2 · α2), and fans themselves (2 · α).

4.4.4 Improving the Friends Set via Audits

The purpose of the audit is to have node ni periodically attempts to improve its friends.

The audit operation builds atop the background voting mechanism already described in

Section 4.4.3. Each node instantiates an audit periodically, i.e., once every 30 seconds.

Audit operations are asynchronous at each node and do not require any global changes or

synchronization. Figure 4.4 describes the audit operation, and we explain below in words.

First, the unaudited candidate nj with the maximum number of votes is selected as a

prospective friend. At this point, the nj .audited flag is set to true. Further, node ni fetches

the Bloom filter and network coordinate of nj directly from nj during this process if either

was previously unknown.

Now, if the friends set is not full at the time of an audit operation, i.e., |FRIENDS(ni)| <

α, nj is automatically deemed to a viable friend. However if the friends set is full, a prospec-

tive friend can only be included in the friends set if coupled with eviction of a incumbent

friend. Further, this should only be done if the swap increases the utility of the friends

set. Amongst all the friends sets formed with each possible eviction of an incumbent node
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(coupled with inclusion of nj), we find the friends set that yields the highest utility. If this

set has a higher utility than the current friends set, node nj is deemed to be a viable friend.

To prevent hysteresis, a new friends set must increase the utility by at least δ% (=1% in

our experiments). If no such case exists, the friends set is left unchanged.

Once the node nj has been deemed a viable friend, a friendship request is sent to it.

Node nj approves friendship requests on a first-come first-serve basis until its fans set is

full. Node nj piggybacks its friends set to the friendship request response, so that node ni

can continue to expand its candidate set. If nj denies the friendship request (it does so only

if its fans set is full) from ni, ni repeats the audit operation if ni’s friends set is not full.

Finally, on any change to the friends set at ni, all nj ∈ CANDIDATES(ni) have their nj .audited

and nj .votes flags reset to false and 0 respectively, so that they are once again open to

periodic auditing.

Bloom filters and network coordinates change only infrequently. This is because feed

subscriptions and unsubscriptions at a node occur at much larger time scales than audits,

while network coordinates are not changed for the duration of a Rappel session, i.e., an

online period. As a result, we version both the Bloom filters and network coordinates. To

save bandwidth, Bloom filter and network coordinates need only be fetched during the first

audit. However, the Bloom filter and network coordinates for the friends set need to be

kept up to date as they are used for audit operations. Hence, a node piggybacks the latest

version numbers of its Bloom filter and network coordinates with each message. Whenever

a node learns about a newer version of a Bloom filter or network coordinate of a friend,

e.g., via a ping-ack message, it fetches the latest version directly from that friend.

4.5 Per-Feed Dissemination Trees

With the goal of avoiding noise (see definition in Section 4.1.1) in update dissemination,

Rappel constructs one spanning tree for each feed’s subscriber group. The structure and the

function of the dissemination trees is detailed in Section 4.5.1. Recall from Section 4.1 that

it is our goal to have a: (i) low overhead at publishers and subscribers, and (ii) low latency
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and stretch factor (w.r.t. the direct IP route from publisher to the subscriber) for updates.

In Section 4.5.2, we present a bottom-up process that aids a node in locating a “better”

parent in the tree. As opposed to a centralized top-down join at the publisher, a bottom-up

approach reduces the traffic load incurred at the top levels of the tree close to the root and

instead balances the load out evenly. The traffic load due to centralized joins increases if

the system exhibits high churn. In order to keep update latencies low in face of network

churn, the node periodically rejoins the tree (Section 4.5.3). Lastly, in Section 4.5.4, we

present the approaches that help maintain continuity of service to descendants of a properly

departing node.

4.5.1 Structure and Function of Dissemination Trees

We first comment on the high-level structure and function of the dissemination tree. A

given node maintains one parent and a few children per tree. The node also maintains the

coordinates of the feed publisher and the list of its ancestors in the tree, starting from its

parent all the way up to the root (publisher), both of which a node learns from its parent.

The ancestor chain is kept up-to-date by piggybacking it atop ping-ack messages sent from

the parent node to each of its child nodes.

Each node continually monitors the liveness of its parent via periodic ping requests

akin to the ping-ack mechanism described in Section 4.4.3. As the parent-child relation is

reciprocal, a parent node implicitly uses the ping request from a child node to confirm the

child node’s liveness. If a node’s parent is deemed as failed, the node attempts to find a

new parent via a tree rejoin. If a child is deemed as failed, the parent node merely deletes

the child entry.

For a given tree, the maximum number of children at any node is parametrized by β.

This allows us to limit the data overhead at each node in the system, i.e., each node is

limited to forwarding an update to up to β children for each of its feeds. Too low a value

for β leads to deep trees with high latencies, while too high a value overloads nodes. In

Section 6.2.2, we show that a value of β = 5 works well in practice.

Given a dissemination tree for a given feed fk, it can be used to both push and pull
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updates. Since fast dissemination is one of our goals, Rappel publishers push updates down

the dissemination tree. While a push is used to send an update to all online nodes, a pull

is used by a node to obtain missing updates from a new parent (immediately after a join

or a rejoin). Thus, if node nj ’s parent fails during the push-based dissemination of an

update, nj will pull the update from its new parent. In turn, nj will push the update to

its children. To facilitate pulls, each node maintains a cache of recently received updates –

our implementation uses a cache size of 10 updates.

A single failure causes an additional delay at all the failed node’s descendants. The

expected additional delay at the descendants is 22.5 seconds since the pinging interval and

timeout takes 45 seconds. Latency degrades linearly with the number of concurrent failures

in the ancestry chain. However, one can expect the number of concurrent failures in the

ancestry chain to be relatively low in a deployed system. For example, using an hourly

network churn rate of 25% observed in the Overnet p2p network [9], the probability of

having 3 concurrent failures (we pessimistically define concurrent to be within 1 minute) in

an ancestry chain of 20 nodes is only p = 0.0125.

While security issues are not a focus of this thesis, we would like to point out a few

things. Zero noise can be ensured even in non-collaborative networks if updates are signed

by the publisher. Signed updates allows subscriber nodes to refuse forwarding for spurious

publishers. Further, the signature can include a sequence number. If there is a lapse in

sequence numbers, the missing updates can be pulled from another ancestor. To further

safeguard this, a publisher can send a void update (i.e., an update with only the latest

sequence number) periodically.

4.5.2 Locating a New Parent: A Bottom-up Approach

One purpose of the friendship overlay is for a newly joining node nj to locate an active node

ni for any feed fk. Initially, the active node also acts as the parent node of ni. However, this

can lead to poor stretch ratio (“zig zag” paths) if the tree is not reorganized periodically.

Therefore, in this section, we present an algorithm that selects a new parent in a bottom-up

manner. The iterative process leads to the compaction of the tree and hence better stretch
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ni::Receive-Join (nj , fk)
begin

nk ← publisher(fk);
if ni does not subscribe to feed fk then

// False positive due to Bloom filter
Send JoinDeny to nj ;

else if ||ni, nk|| > ||nj , nk|| then
// Figure 4.6(a): Requesting node is closer to publisher
Send JoinForward (parent(ni, fk)) to nj ;

else if |CHILDREN(ni, fk)| < β then
// Figure 4.6(b): There is room for more children
Send JoinOK to nj ;

else
CLOSER ← {nc|nc ∈ CHILDREN(ni, fk) and

||nc, nk|| < ||nj , nk||};
if |CLOSER| = β then

// Figure 4.6(c): Every child is closer to publisher
Find node nfwd ∈ CLOSER closest to nj ;
Send JoinForward (nfwd) to nj ;

else
// Figure 4.6(d): Evict the child farthest-away
Find nf ∈ CHILDREN(ni, fk) farthest to nk;
CHILDREN(ni, fk)← CHILDREN(ni, fk)− nf ∪ nj ;
Send JoinOK to nj ;
Find np ∈ CHILDREN(ni, fk) closest to nf ;
Send ChangeParent (np) to nf ;

end

Figure 4.5: Reception of a Join request at node ni from node nj for feed fk.

ratios.

Starting with the current parent, a join request is routed amongst the subscribers of

fk until a parent node for nj is found. This procedure is described by the pseudo-code in

Figure 4.5, illustrated in Figure 4.6, and described below.

In selecting a new parent, Rappel always maintains the following invariant: the parent

of a node nj must be closer to the publisher than nj itself (in the network coordinate space).

In other words, all descendants of a node are farther from the publisher than itself1.

The main goal in this protocol is for the node nj to find a prospective parent that is

both closer than itself to the publisher of feed fk (in network coordinate space), as well as
1With the exception of rare ties, which are broken by lexicographical ordering of IP addresses.
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Figure 4.6: The actions of node ni on receiving a join request from node nj for feed
fk. Note that nk is the publisher node. For this example, we use a 2-D coordinate
space and limit the number of children per node to 3.

has spare capacity to add an extra child (i.e., it has fewer than β children for feed fk’s tree).

Suppose the current contacted node is ni (initially, this is the active node). Using network

coordinates, node ni determines whether nj is closer to the publisher than itself. If so, then

nj is redirected to ni’s parent (Figure 4.6(a)). Otherwise (ni is closer to the publisher), if

ni has spare capacity to add a child, nj becomes a child of ni (Figure 4.6(b)). Otherwise

(ni has no spare capacity), if all children of ni are closer to the publisher than nj , then it

redirects nj to the child closest to nj (Figure 4.6(c)). Otherwise (if at least one child of ni is

farther from the publisher than node nj), then nj becomes a child of ni. In turn, ni evicts
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the current child that is farthest from the publisher. The victim child is directed to rejoin

the tree at the child of ni that is closest to the victim child (Figure 4.6(d)). The evicted

child then repeats the joining protocol – this is not an encumbrance since nodes attempt to

seek new parents periodically anyway (as the next section describes). As an optimization,

the evicted child skips the next scheduled periodic rejoin.

4.5.3 Periodic Rejoin Operations

In order to maintain low stretch factors, especially under network churn (due to node joins

and leaves), it is imperative that each subscriber node continually attempts to minimize its

distance to the publisher. To achieve this, we use the convenience of the triangle inequality

afforded by a (network) coordinate system.

Although it is well known that the triangle inequality does not hold within the Internet,

it does however hold in an Euclidean coordinate space. Note that Dabek et al [23] find that

the number of major triangle inequality violations on the Internet is rare (around 5%), and

hence, embedding network latency information into network coordinates remains effective.

With this in mind, we observe that the distance from a subscriber to a publisher, in the

Rappel tree, is always minimized if the subscriber attempts to find a parent that is higher up

the tree. This is true because of the Rappel invariant (beginning of Section 4.5.2), whereby

a node is closer to the publisher than any of its children.

Thus, each node nj periodically attempts a rejoin at a non-parent ancestor. For this,

the algorithmic steps represented by Figures 4.6(c) and 4.6(d) move subscriber nodes to a

place in the tree that reduces their stretch factor, irrespectively of the order in which nodes

joined the tree. When a node moves up the tree, so do all its descendants. As a result,

periodic rejoining has the added benefit of continually compacting the tree in a distributed

fashion. Note that these rejoins are performed asynchronously by subscriber nodes and are

not a global overhauling of the tree.

Two issues remain to be discussed: (i) selection of ancestors for the rejoin, and (ii) the

frequency of rejoins.

If the rejoining ancestor was chosen with each ancestor having equal probability of being
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selected, nodes closer to the publisher (i.e., having low tree heights) would be overloaded

with rejoin messages. To address this, we exponentially decrease the probability of an

ancestor being selected as a function of its distance from nj . Concretely, consider a tree

with height H and fan-out β. The height of the publisher is h = 0. Let hi and Si denote

the height of ni in the tree, and the number of descendants in the sub-tree rooted at

ni respectively. A node nj will attempt a rejoin at a non-parent ancestor na, i.e., the

difference of heights of nj and na is at least 2 (hj − ha ≥ 2). na is chosen with probability

Pr[na] =
β−(hj−ha)∑hj

p=2 β−p
. This ensures that each non-leaf node ni in a tree receives an expected∑H

p=hi+2(
∑p

q=2 β−q)−1 = Θ(logβ Si) overhead of incoming rejoin messages per period. This

is far more preferable than centralized joins which would overload the root node and those

below it.

Too low a rejoin frequency might cause tree degradation while a high frequency will

incur a greater cost. In practice, we found that a rejoin period of 10 minutes at each

Rappel node works best – this is true even for scenarios with heavy network churn (see

Section 6.2.2 for experimental results).

4.5.4 Leave Operations

A node that leaves a tree (i.e., due to an unsubscription or due to a user-requested discon-

nect) attempts to provide continuity of service to its children nodes. Stated differently, (i)

during a rejoin, while a node seeks a new parent, it must continue to receive updates from

its current parent and disseminate them to its descendants; while (ii) during departure, a

node must continue providing service to its children while they seek new parents. These

two operations are labeled as proper rejoin and proper leave procedures.

The proper rejoin procedure ensures that no updates are missed by a node and its

descendants while it switches parents. Let us assume that during a periodic rejoin, node nj

switches from its current parent node ni to a new parent node nk. The proper rejoin protocol

simply requires node nj to discover a potential new parent in the background. When, and

if, a better parent nk is found, nj first connects to nk before leaving ni. Duplicate updates

(i.e., updates received both from ni and nk) are simply dropped.
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The proper leave procedure aims to maintain the continuity of service to children nodes

of the departing node nj . To this end, nj continues to forward messages to its children

until they are able to find new parents. The proper leave operation is as follows: node nj

first notifies its actual parent node ni to accept a specified node nc as an additional child.

This node nc is the child node of nj that is closest to the publisher. Node ni will accept nc

as a child even if it means having more than β children momentarily. All other children of

nj are instructed to rejoin the tree at nc. Upon finding a new parent, the children nodes

notify and leave nj . Once nj receives notifications from all its children (or after waiting

for 30 seconds), it leaves the tree by notifying its parent ni. Note that any failures during

the leave protocol can be detected and recovered from using the aforementioned ping-ack

mechanism.

4.6 Bootstrapping

In this section, we describe the three bootstrap techniques required in Rappel. Firstly,

a node may need to join a dissemination tree for a newly subscribed feed in an ongoing

session. Our solution leverages the existing friendship overlay. Secondly, a node may

reenter the Rappel system at the start of a new Rappel session, i.e., after an offline period.

Our approach uses the stale friends set to quickly create an effective friends set and join

numerous dissemination trees via only a few friends. Thirdly, there is a special case of a

virgin Rappel session. In this case, we bootstrap both the friendship overlay and join the

different per-feed dissemination trees.

Joining a Feed We first consider the case of a node already in Rappel, attempting to

join the dissemination tree of a newly subscribed feed. To join the dissemination tree of a

single feed fk, a node examines whether fk is (could be) encoded in any of the Bloom filters

of its current friends set. If there are matches, the closest friend (as measured by network

proximity) is requested to be the parent. Note that the request sent to the friend serves

as an implicit step to verify the Bloom filter’s correctness. If none of the friends provide

coverage for the feed, the node contacts the publisher of that feed directly. This ensures
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that the publisher is contacted only in the rare case when even one friend fails to provide

subscription coverage for a feed.

A Virgin Rappel Session A node joining Rappel for the first time ever (its virgin

Rappel session) has an empty friends set. Instead of having the node join at each feed’s

publisher directly, we use a staggered join strategy to reduce the load on the publishers and

simultaneously construct a friends set.

During the staggered join, the virgin node initially joins dissemination trees for a few

of its subscribed feeds (ordered randomly) directly at the respective publishers. The direct

node joins help discover several nodes via the iterative tree join process described in Sec-

tion 4.5.2. The first few of these nodes help seed the friends set. Further, for the duration of

the staggered join process, the auditing process is performed continually (see Section 4.4.4).

To let the friends set evolve, we enforce an interval of 20 seconds before each successive join

at the publisher. Ideally the friends set will gain high utility and provide feed coverage for

the remaining feeds. In reality, we found that this did indeed happen: a high utility friends

set is reached after as few as 4 to 12 tree joins (the number depends on the node’s feed

subscription set). Hence, any unfulfilled joins are performed directly at the publisher after

performing the 12th staggered join.

Note that an effective friends set – one that provides high subscription coverage – allows

a virgin node to join numerous dissemination feeds via only a few friends. This greatly

reduces the join load (and time) on nodes that subscribe to tens or hundreds of feeds. Note

that a node performs the periodic rejoins (see Section 4.5.3) only after it has already joined

all the required dissemination trees.

A Reentrant Rappel Session If a node is rejoining the Rappel system, it probes its

stale friends set to bootstrap a new friends set. We find that, in most cases, even if only

one stale friend is alive, a highly effective friends set can be quickly achieved. Using the

new friends set, a node iteratively joins as many of the subscribed feeds as possible. This

is the common use case: based on its stale friend set, a reentrant node with join numerous

dissemination trees via a handful of friends. If unable to locate a stale friend, the node
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performs a staggered join process while letting its friends set evolve.
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Chapter 5

Realistic Application-Level
Network Simulation Framework

In this chapter, we describe the Realistic Application-Level Network Simulation (RANS)

framework. RANS provides discrete-event simulation. The goal of the RANS framework is

to realistically model selected system diversity factors at a large scale, while allowing for

repeatable experimentation. We use the RANS framework in the context of, and validate

it using, Rappel. The realism stems from the fact that the RANS framework is fitted

by real traces of Internet topology [107], end-to-end latency fluctuations between Internet

hosts [52], and end-user churn observed in peer-to-peer file sharing applications [9].

A second advantage of the RANS framework is that it allows a researcher to write code

that can be seamlessly compiled in to both a large-scale discrete-event simulator or a sockets

binary (ready to be deployed over a real network). As such, the RANS framework can be

used to implement and test any distributed application in a PlanetLab-like environment.

5.1 Design Objectives

System deployment is a labor-intensive exercise, and thus, limited in scale. For instance,

PlanetLab, a large experimental network testbed, usually only has about 400 accessible

nodes at any given moment. Further, due to the presence of extrinsic interferences, exper-

iments are not replayable. Simulations provide an acceptable solution to these problems,

however, they often fail to mimic system diversity in a realistic manner. To provide more

realistic simulation results, we design the RANS framework to provide the following prop-

erties:

• Realism: The simulation results output by the framework should be realistic. There

are two flavors to realism: (1) the simulation results should match observations made

58



by a deployment of the same application over a real network, and (2) the simulation

should be run with the same realistic code as an actual implementation. As such,

RANS framework should generate both a simulation binary and a ready-to-deploy

sockets binary from the same code.

• Deterministic Replay: The framework should provide support for deterministic

replay. An unmodified application should yield the same result when provided with

identical input as a previous execution.

• Large Scale: The framework should provide support for large-scale simulations, with

ability to simulate several thousand end nodes. Note that applications themselves that

are memory or CPU bound can limit the scale of simulations.

Given the emphasis on realism, the RANS framework allows a researcher to conduct

large-scale simulations that yield believable results.

5.2 A Design Overview of the RANS Framework

Our efforts are motivated by the observation that debugging and profiling of distributed

applications can benefit from a simulated, controlled, deterministic, and replayable environ-

ment for execution. For instance, if an application instance crashes or behaves erratically

due to a semantic error in a subroutine, the subroutine can be refined and the application

replayed with the same input parameters.

However, researchers are skeptical regarding the ability of simulated environments to

faithfully mimic real-world conditions. Much of the skepticism is related to the granularity

of simulations. Relatively speaking, fine granularity simulation considers more realistic

artifacts than does coarse granularity simulation. For instance, fine granularity network

simulation may model network capacities and traffic flows. More concretely, to simulate

TCP-based network flows requires both maintaining a TCP state machine at each end of a

network connection and a network queue at each intermediate router. On the other hand,

coarse granularity simulation may simply estimate the time to deliver a message to the
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destination. Due to the requirements of fine granularity simulation, a network simulation

quickly becomes CPU- and memory- bound, thus limiting the number of nodes it can scale

to.

To tread this dilemma and yet support realistic large-scale simulations, in the RANS

framework, we take a new approach: selective granularity. This involves selecting only the

system diversity metrics most relevant to our experimental evaluation. The RANS frame-

work provides native support for fine granularity simulation of end-to-end latency fluctua-

tions, packet loss rate, and simplified abstraction of TCP and UDP flows. Our simulation

is representative of real-world conditions across the aforementioned metrics, because the

RANS framework is driven via real traces of Internet topology [107] and end-to-end latency

fluctuations between Internet hosts [52]. On the other hand, we do not model network

capacity at a fine granularity, as we can use deployment for data-intensive experiments.

The RANS framework allows the written application code to be seamlessly compiled into a

sockets binary, which can then be deployed on a real network. A deployment can be carried

out once the application has been thoroughly debugged and tested via simulation.

5.3 Related Work

Contemporary discrete-event network simulators such as ns2 [68], OPNET [69], and Qual-

Net [76] provide fine granularity simulation of the network. These simulators primarily

focus on the network and transport layers of the OSI stack. As such, many of these simula-

tors do not provide easy-to-use application level semantics. For instance, ns2 only notifies

application level code how many bytes were received by the transport layer in a given pay-

load. The application code itself must have a mechanism to determine what information

was delivered in that payload, which entails managing a messaging queue at the application

level. As such, GnutellaSim [40] extends ns2 to provide greater support for application level

semantics. For example, the GnutellaSim API provides a seamless way to send and receive

messages at the application level. Lastly, it should be noted that due to the fine grained

simulation at the network layer, these class of simulators are unable to scale beyond a few
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thousand end-nodes while using a deterministic, single thread of execution.

A new generation of network simulators focusing on the application layer have been come

about in the past few years, including p2psim [70] and PPF [54]. p2psim is multi-threaded,

and hence, lacks determinism. Further, it sacrifices fine granularity simulation of network

properties for scalability, for example, it does not natively provide realistic fluctuations

of end-to-end latencies. PPF is the Protocol Plugin Framework, and akin to the RANS

framework, it provides a mechanism to transform code into both a simulator or a sockets

binary. It also provides scalability and determinism. However, it fails to provide the level

of realism that is natively supported by the RANS framework.

Network emulation has grown in popularity in recent years. Both EmuLab [98] and

ModelNet [94] provide a customizable network tested, using real physical hosts as end

nodes. To use these systems, a researcher must provide a topology specification, which

supplies the properties of each link connecting the end nodes, i.e., latency, bandwidth,

packet loss rate, etc. The properties of the links are maintained by passing them through

a router that uses packet shaping techniques. As both systems use physical hardware, the

scale of experimentation is limited. Generally, an experiment spans few dozens of hosts.

A suggested manner to scale an application deployment to larger sizes is to use multiple

instances of the application on each physical host. While network emulators reduce the

overhead to deploy an application, they do not account for interference due to external

network traffic, and hence, realism. Further, the lack of replayability makes it harder to

debug applications.

5.4 Framework API

At its core, the RANS framework provides two primary abstractions that researchers can

leverage to implement a distributed application: events and messages. As Figure 5.1 shows,

in the RANS framework, an instance of the application runs within a single node. An ap-

plication can run multiple network protocols; for instance, our implementation of Rappel

runs both the Vivaldi protocol and the Rappel protocol (as described in Section 4.3). A
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Figure 5.1: The RANS framework.

class Event {

public :
// cons t ruc t o r
Event ( const NodeId& node id ) ;

// schedu l e the event
void s chedu le ( const Clock& whence ) ;

// re s chedu l e the event
void r e s chedu l e ( const Clock& whence ) ;

// cance l the event
void cance l ( ) ;

// c a l l b a c k when the event e x p i r e s
virtual void on exp i r a t i on (Node∗ node ) = 0 ;

. . .
} ;

Code Snippet 5.1: The base Event class.

node only has access to information about its own state and what it discovers by commu-

nicating with other nodes. A node schedules future events using the EventManager and

communicates with other nodes using the TransportManager.

Partial C++ code for the base Event class is given in Code Snippet 5.1. An application

that needs to schedule a future event may do so by invoking the schedule() method on an

instance of the Event class. Note that the Event class is itself an abstract class and needs

to be derived prior to usage. For example, an application that wants to periodically issue a

keep-alive to its peers may derive the PeriodicKeepAlive class from the base Event class.
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The derived class must override the on expiration() method, wherein the functionality

needed to carry out the specific event is detailed. Note that the derived class may freely

include additional variables required to execute the event.

Observe that the schedule() method requires a parameter, whence, which is the time

when the event will be executed. The Event class provides a reschedule() method which

can be invoked to change the time of an already scheduled event. Lastly, there is a cancel()

method which allows the application to cancel a pending event. The EventManager keeps

track of all pending events and executes them at the appropriate time.

Code Snippet 5.2 shows part of the base Message class. To properly use the RANS

framework, all interaction between nodes must occur exclusively via the invocation of the

send() method on an instance of the Message class. There should be a unique derived class

for each different type of node interaction. For example, a simple keep-alive interaction may

derive the Message class to form two new classes: Ping and Pong. The derived classes may

freely include additional variables that are necessary for the interaction. As an example,

the Ping class may additionally include a sequence number variable.

The derived classes must override the following methods: protocol(), which determines

the transport protocol (UDP or TCP) used to deliver the message, and on recv(), which

gets executed at the destination node after it receives the message. The sender node invokes

the send() method to dispatch the message to the destination node.

To allow nodes to interact across a network, messages have to canonically serialized.

Since the RANS framework only permits node interaction via Message class, all objects de-

rived from Message class are automatically serialized using the boost::serialization [78]

library. However, automatic serialization may be inefficient for some object types, and as

such, the application may want to provide a more efficient serialization and deserialization

methods. To do so, the derived class must override the auto pack() method to return

false, and in conjunction, the derived class must also override the pack() and unpack()

methods to provide serialization and deserialization functionality. Doing the former but not

the latter results in a program assertion.
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class Message {

public :
// cons t ruc t o r
Message ( const NodeId& source , const NodeId& de s t i n a t i on ) ;

// t ran spo r t p ro t o co l used to send t h i s message
virtual t ranspor t : : Protoco l p ro to co l ( ) const = 0 ;

// c a l l b a c k when the message a r r i v e s at the d e s t i n a t i o n node
virtual void on recv (Node∗ node , std : : s i z e t byte s r e cvd ) = 0 ;

// au t oma t i c a l l y s e r i a l i z e o b j e c t data ? [ maybe i n e f f i c i e n t ]
virtual bool auto pack ( ) const {

return true ;
}

// custom s e r i a l i z e r [ invoked i f f auto pack () i s f a l s e ]
virtual std : : s t r i n g pack ( ) const {

a s s e r t ( fa l se ) ;
}

// custom d e s e r i a l i z e r [ invoked i f f auto pack () i s f a l s e ]
virtual Message∗ unpack ( const std : : s t r i n g& input ) const {

a s s e r t ( fa l se ) ;
}

// d i s pa t ch the message
void send ( ) ;

. . .
} ;

Code Snippet 5.2: The base Message class. A new derived class must be defined
for each unique type of interaction between nodes.

5.5 Implementation

There are some notable differences as to how the discrete-event simulator and the sockets

binary variant of the RANS framework are implemented.

The sockets binary is implemented using asynchronous, non-blocking I/O. The Trans-

portManager user the select() system call to receive messages in a non-blocking manner.

When there are no pending messages, control is passed to the EventMananger, which ex-

ecutes any recently expired events. If there are no pending events, the control is passed
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Figure 5.2: The implementation of the RANS framework as a discrete-event simu-
lator.

back to the TransportManager. This process is repeated ad infinitum in a tight loop. We

leverage the boost::asio [50] library to provide cross platform support.

On the other hand, the implementation of the discrete-event simulator is more complex.

To provide determinism, the simulator is implemented as a single-threaded application.

Within the simulated environment, RANS needs to mimic the operation of multiple, inde-

pendent end-nodes and the network on which these nodes interact. We maintain the list of

end-nodes as an array, with each node’s state maintained independently. Recall that the

only permissible manner in which nodes can exchange their state information is via the the

the send() method by the TransportManager’s Message class.

Figure 5.2 shows an overview of how the RANS framework is implemented as a discrete-

event simulator. As mentioned before, an application implemented on the RANS framework

only interfaces with the following two components:

• EventManager: The EventManager provides the core functionality upon which the

rest of the RANS simulation framework depends. The EventManager is implemented

as a priority queue in which events are inserted. Whenever the next pending event

in dequeued, the simulation time is moved forward to the time at which the pending

event is due.

• TransportManager: The TransportManager delivers the message across the net-

work. It depends on the TopologyManager to calculate the end-to-end latency between
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source and destination nodes. The TopologyManager models fluctuations in end-to-

end network latencies. Implementation details of the TopologyManager are described

later in this section. Based on the end-to-end latency information, using the Event-

Manager, the TransportManager schedules an event that delivers the message to the

destination node. The TCPMananger and UDPManager decide the properties of how

the packets are delivered. For instance, as the end-to-end latencies model fluctuations,

the TCPMananger guarantees that the packets are delivered in FIFO ordering.

We interpose the ChurnManager between the simulated nodes and the RANS API to

model churn. Simply put, the ChurnMananger brings nodes online and take them offline

at the appropriate times. A node that is offline can not send or receive messages. All

pending events for that node are also canceled. The ChurnManager can be turned on or

off depending on the need of the given experiment.

The ChurnManager is driven by the traces of user participation in the Overnet peer-to-

peer file sharing application [9]. It should be noted that Overnet’s hourly churn rate is as

high as 25% of the total population. The traces were collected by Bhagwan et al by probing

2400 Overnet nodes at 20-minute intervals. At each probing period, nodes were recorded

as either being online or offline. To support more realistic churn events, the ChurnManager

uniformly distributes the recorded churn events, i.e., node joins and leaves, over the given

20-minute probing interval. Further, to support an arbitrary number of end hosts, the

original traces are replicated as necessary.

5.5.1 Topology Fitting

In this section, we show that by fitting latency observations collected on PlanetLab with the

Internet topology, we can support an arbitrary number of end hosts with realistic end-to-end

latency fluctuations across them. A detailed discussion of our topology fitting methodology

follows.

A simulation environment may use an artificially generated end-to-end latency matrix to

determine the latency between two end hosts. However, this approach is clearly not realistic.

An alternative is to use an end-to-end delay matrix observed across Internet hosts. We prefer
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Figure 5.3: The latencies modeled by our network simulator closely matches the
latencies experienced within PlanetLab.

this option. The largest such data set known to us is the King measurement data [37], which

provides the end-to-end latency matrix for 2500 hosts. However, the King data set only

includes a singular observation between each node pair. This does not allow us to support

latency fluctuations, which are a key property of Internet routes. Further, using the King

data set limits a simulator to support only 2500 hosts, as replicating latency data introduces

artificiality. For instance, with replicated data, a simulation of a network coordinate system

may result in higher correlation (clustering) that appropriate for a real network.

A data set provided Ledlie et al [52] presents the end-to-end latency measurements

between 226 PlanetLab hosts. While smaller than the King data set, the Ledlie data set

includes at least 50 measurements between any given node pair. To accurately mimic the

latency fluctuations observed on the Internet at a scale larger than 226 nodes, we extrapolate

the Ledlie data set with the AS network topology collected by Zhang et al [107].

The Zhang data set consists of 20, 062 stub networks, 175 transit networks, and 8, 279

transit-and-stub networks. The TopologyManager places simulated end-hosts within a ran-

domly selected stub network. However, the Zhang information does not include inter-AS

latency measurements. To augment this lack of information, via trial and error, we find

an assignment of latency distribution to inter-AS links, that result in a match between the

end-to-end latencies calculated by the TopologyManager and the end-to-end latencies mea-

sured in the Ledlie trace. The latency distribution is as follows: 10% of inter-AS links have
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a latency between 0 ms and 4 ms (selected uniformly at random), the next 30% of inter-AS

links have a latency between 4 ms and 30 ms, and the final 60% of inter-AS links have a

latency between 30 ms and 115 ms. Figure 5.3 shows that the resulting end-to-end latencies

closely model the observed median latencies between PlanetLab nodes. Further, and more

importantly, by associating each simulated node pair to a PlanetLab node pair from the

trace (based on median latency), we inject realistic latency fluctuations in the simulator.

Using this method, the TopologyManager supports an arbitrary number of end-hosts with

realistic and fluctuating end-to-end latencies.

Note that due to the memory overhead required to implement realistic latency fluctua-

tions over Internet-scale topology, experiments that require end-to-end latency realism are

limited to approximately 10, 000 nodes.

Lastly, we discuss how a researcher can introduce randomness into the simulation, which

plays a critical role during debugging and for performing multiple runs of the same simula-

tion. The simulator is “warmed up” using a predetermined seed parameter. The researcher

can change the seed parameter at the start of the simulation. If the application invokes

rand() to make decisions, different seed parameters will trigger different sequence of events,

hence, producing different results. However, if the application does non invoke rand(), the

simulator can be optionally configured to add a minute amount of random delay to each

scheduled event. To clarify, if the same seed parameter is provided to two different runs

of the same simulation, the results will be identical – maintaining our objective to provide

deterministic replay.
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Chapter 6

Experimental Evaluation of Rappel

In this chapter, we evaluate Rappel’s ability to exploit system diversity by leveraging interest

and network locality, using both a deployment and large-scale simulation. We also implicitly

validate the RANS framework in the context of Rappel.

Concretely, first, we show that the results gathered from a PlanetLab [75] deployment

of the Rappel socket binary matches the results output by our simulator (Section 6.1). This

validates the ability of the RANS framework to faithfully mimic network diversity observed

on PlanetLab, and allows us to run experiments on a larger scale, with more nodes than

are available on PlanetLab. Next, via large-scale simulations (Section 6.2), we evaluate

Rappel’s ability to exploit system diversity by studying the message latencies observed

within the dissemination trees, the impact of combining network and interest locality, and

the bandwidth consumption of nodes. Lastly, we compare Rappel with Scribe [19] to show

the tangible benefits gained by Rappel’s noiseless design.

6.1 Deployment and Validation of the RANS

Framework

The scale of PlanetLab experiments is limited to the approximately 400 nodes accessible at a

given moment. In this section, we validate the results produced by the RANS framework via

simulation match the results obtained via a PlanetLab deployment. Due to this validation,

Rappel’s simulation results at larger scales (Section 6.2) can be expected to realistically

predict the performance of Rappel with the network diversity experienced atop a real,

larger PlanetLab.
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6.1.1 Experimental Methodology

We deployed Rappel on nearly 400 nodes within PlanetLab. The Rappel binary uses TCP

to transport Rappel specific messages, and UDP datagrams for Vivaldi [23] messages and

experimental primitives described next. In order to accurately measure sub-second update

latencies in spite of hardware clock skews and drift, our measurement code runs periodic

clock synchronization between each Rappel node and a reference server. Further, we mea-

sure the native IP route latency between a subscriber node and a publisher node. The

native IP route latency is used to calculate the stretch induced due to the usage of Rappel

for disseminating updates. To measure the route latency, each subscriber sends a periodic

PING message to the publisher, upon whose receipt the publisher sends back a PONG mes-

sage. The amount equal to half of the round-trip time is estimated as the native IP route

latency between the publisher and the subscriber, for that period. We measure the native

IP route latency repeatedly to track network latency fluctuations.

As Rappel builds dissemination trees using network coordinates as a first-class primitive,

unnecessary fluctuations of network coordinates may hamper performance. We use heuristic

improvements to Vivaldi suggested by Ledlie et al [52] which provide a reasonable trade-

off between accuracy of coordinates and stability in their values over time. Further, we

affix the network coordinates of a node for the duration of a session, i.e., an online period.

When a node joins the Rappel system, it quickly calculates its network coordinates using 18

geographically diverse landmark servers. This process is completed in a matter of seconds.

If a node experiences poor performance due to network coordinates, it may recalibrate

its network coordinates. However, our implementation achieves good performance without

using recalibration.

Our experiments use the value of β = 5 (the fan-out of dissemination trees – see Sec-

tion 4.5) unless mentioned otherwise. The publishers continuously post a new update of

size 1 KB every minute.
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Figure 6.1: The geographic projection of a per-feed dissemination tree constructed
using PlanetLab nodes.

6.1.2 Results

This section studies the characteristics of the per-feed dissemination trees formed by Rappel.

Recall that we discussed the design of Rappel’s per-dissemination trees in Section 4.5.

Figure 6.1 illustrates an actual dissemination tree formed using 25 PlanetLab subscriber

nodes. The publisher node is a computer located on the campus of the University of Illinois

at Urbana-Champaign, and is marked by the label UIUC (the largest square) in the figure.

The outgoing arrows connect a node to its children. Note that in this experiment, the fan

out of the tree is set to β = 3 for the purposes of visual clarity. One can observe that tree

structure created by Rappel is highly correlated to geography. For example, if one observes

the path from the root node to the node located in Portland, Oregon, one can see that the

dissemination route created by Rappel follows very closed to an edge that maybe formed

by connecting the two nodes. This experiment demonstrates the strengths and effectiveness

of both the underlying network coordinate system (Vivaldi [23]) and the bottom-up tree

construction algorithm used by Rappel.

Next, to observe the performance of per-feed dissemination trees in a larger system,

we studied, under both simulation and within PlanetLab, a group of 250 subscriber nodes

subscribing to the same 1 publisher for t = 4 hours. Furthermore, we cause 50% of the

nodes (selected randomly) to fail simultaneously at time t = 2 hours, and then rejoin at
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Figure 6.2: The absolute delay to disseminate an update to subscriber remains low
with Rappel. Further, the results from our PlanetLab deployment and our network
simulator yield approximately the same results.

t = 3 hours.

From our experiment, we tabulated (1) the update latency, defined as time between

publisher creating an update and a subscriber receiving it, and (2) the stretch factor of

update latency. Recall that the stretch ratio is calculated based on two metrics: the actual

measured latency and network coordinate distance. To be precise, the former is the the

observed delay to obtain an update divided by the direct IP latency between the subscriber

and the publisher (which requires periodic recalculations to monitor network conditions).

Figures 6.2 and 6.3 show the median and 95th percentile (across subscriber nodes) data

for both simulation and PlanetLab setups. Note that the legend shown in Figure 6.3(b) is

shared across the two figures.

First, we observe a close match between simulation and PlanetLab results on all these

plots (both median and 95th percentile). This helps validate the realism of the simulation

results provided by the RANS framework. We will provide a longer discussion on this in

Section 6.1.3.

Second, Figure 6.2 shows that 50% subscribers receive the update within 100 ms and 95%

of nodes receive it within 500 ms. Large spikes in the 95 percentile dissemination latency
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are noticeable during initialization and right after the churn events – which fade rapidly.

The median update latency fluctuates only moderately in spite of 50% instantaneous churn.

Smaller spikes in the 95 percentile data are due to periodic rejoin operations (Section 4.5.3)

– this is because some nodes are evicted during the process (Figure 4.6(d)). Updates to

these nodes and their descendants are delayed until the node pulls the missed update(s)

from its new parent.

Third, Figures 6.3(a) and 6.3(b) plot the stretch factor for updates in two different

ways. Figure 6.3(a) depicts the stretch factor w.r.t. direct network latency from subscriber

to publisher (measured periodically and continuously). The median stretch factor stays

between 2 and 4. In Figure 6.3(b), we plot the stretch factor w.r.t. the subscriber-publisher

network distance in the underlying coordinate system. The median stretch factor in this plot

stays around 1.15, and 95% of the nodes have a stretch factor below 1.25, which are both

satisfactorily low. Since Rappel relies solely on the underlying network coordinate system

for its network proximity, we can conclude that the per-feed dissemination trees effectively

exploit network proximity to the extent that the underlying coordinate system is accurate. A

reason for the increased 95th percentile stretch factors in Figure 6.3(a) (measured stretch

ratio) vs. Figure 6.3(b) (network coordinate stretch ratio) is due to tree rejoins. For an

ongoing update (only), a tree rejoin causes the coordinates stretch factor to improve, while

the update latency degrades due to an update pull. A rejoin also requires the establishment

of a new TCP connection to the parent.

6.1.3 Summary of RANS Validation

Figures 6.2, 6.3(a), and 6.3(b) show that the results observed during our PlanetLab de-

ployment closely match the results generated by the RANS framework. We can see that

the median metrics match well between the deployment and simulations results while the

95th percentile metrics match reasonably (for the three plots). This is to be expected, as

network latency fluctuations are exaggerated for a small set of nodes, i.e., at around the

95th percentile, leading to some adverse effects. Further, we can see that during the massive

join (at t = 2 hours) and massive leave events (at t = 3 hours), the simulator is able to

73



 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0  50  100  150  200

S
tr

et
ch

 fa
ct

or
 (

in
 m

ea
su

re
d 

la
te

nc
y)

Update sequence number (updates published minutely)

N
od

es
 le

av
e

N
od

es
 r

ej
oi

n

(a) Stretch factor (measured latency)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0  50  100  150  200S
tr

et
ch

 fa
ct

or
 (

in
 c

oo
rd

in
at

e 
sp

ac
e)

Update sequence number (updates published minutely)

Simulator: 95th pctile
PlanetLab: 95th pctile

Simulator: median
PlanetLab: median

N
od

es
 le

av
e

N
od

es
 r

ej
oi

n

(b) Stretch factor (coordinate space)

Figure 6.3: Running the experiment with 1 publisher and 250 subscribers on Plan-
etLab and our network simulator yields approximately the same results validating
the “empirical correctness” of our simulation results.

match the spike in metrics observed in the deployment. This shows that the simulator is

also able to realistically mimic drastic changes in the system.

Due this validation of the RANS framework, we argue that simulation results at larger

scales can be expected to realistically predict the performance of Rappel atop a real, larger

PlanetLab.
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6.2 Large-Scale Simulations

As previously mentioned, simulation allows us to study Rappel’s behavior at larger scales

than PlanetLab, yet gives realistic results due to an extensive usage of traces. Via large-scale

simulations, we evaluate the quality of dissemination trees created by Rappel. This shows

the ability of Rappel to exploit network diversity. We also study the benefit of combining

network and interest locality on system performance and the bandwidth requirements of

Rappel. Lastly, we show that due to its noiseless design, Rappel is fairer than Scribe [19]

while performing only minimally worse in message dissemination latency.

6.2.1 Experimental Methodology

We used a real workload of RSS subscriptions obtained from the LiveJournal web ser-

vice [60]. LiveJournal has a large community of users, and averages over 300000 public

posts per day by over 180000 unique users. (data from October 2006). Each LiveJournal

user maintains a “journal”, which is an RSS feed that any other users can subscribe to.

Our experiments map journals to publishers and users to subscribers.

Over six months, we obtained via LiveJournal’s RPC services information about 1.8

million users. This included: (i) a list of users subscribing to their journals; and also (ii)

a list of journals subscribed by these users. In order to obtain a self-contained non-biased

universe of subscriptions, we randomly selected a small seed set of journals from the trace.

Next, we gathered the list of all users subscribed to at least one journal in the seed set.

These users (and their respective journals) form the universe of nodes in our simulation.

As an example, a seed set of 10000 journals gave us a universe of 304814 users. Next, based

on the experiment, the X most subscribed-to journals in this universe were selected to be

our publishers (the value of X depends on the experiment). Subscriptions of users outside

the universe’s publishers were pruned. Note that using the most popular publishers does

not bias correlation, as our seed set is unbiased. The trace refinement procedure leads to

a subtrace that exhibits similar characteristics to the smaller-scale RSS subscriptions trace

presented by Liu et al [56]. For brevity, we do not provide further trace analysis here.
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Figure 6.4: The per-feed dissemination trees achieve low stretch factor with respect
to the network distance.

All our experiments use the value of α = 6 (the number of friends), β = 5 (the fan-out

of dissemination trees) unless mentioned otherwise. The publishers continuously post a new

update of size 1 KB each minute. Each user (whether subscriber of publisher) is based on

a LiveJournal user. Users were mapped randomly to end-nodes, whereas real subscribers

of a feed are likely to be correlated with location. For example, subscriptions to New York

Times RSS feed are likely to be most heavily concentrated around New York City. As a

result, the random mapping gives more pessimistic results for Rappel.

6.2.2 Peer-Feed Dissemination Trees

First, we simulate a network with 1 publisher and 5000 subscribers. Figure 6.4 shows

the scatter plot of stretch factor (w.r.t. network coordinates) for each subscriber during

dissemination of the final update (at t = 4 hours). We observe from the plot that the nodes

farthest from the publisher receive the update with low stretch factors. A low stretch factor

implies that the dissemination path does not “zigzag” beyond a minimal extent. Thus,

nodes farthest away from the publisher are successful in finding good dissemination paths.

The high stretch factors present in nodes closer to the publisher are less of a concern since

updates to these nodes are disseminated within a short absolute latency.

Next, we used the Overnet traces to simulate a network of 5000 continuously churned

subscribers and 1 online publisher; the average churn rate is approximately 30 joins and 30
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Figure 6.5: The per-feed dissemination trees quickly deliver updates to subscribers
even under continuous churn.

leaves per minute. For a series of 220 updates, we measured the update latency at a small

group of 10 “observer” nodes, which were prevented from being churned. These observer

nodes were used to compare the performance of a network under churn against a static

network. While the observer nodes were not churned; their parents, children, and friends

change continuously due to churn. Figure 6.5 shows the CDF of the update latencies across

each of the 220 updates at the 10 observers (using circle points on line). For comparison,

we also plot data for a static network with 5000 subscribers (square points on line). Also,

on both lines we mark the updates that were pulled by their respective nodes (cross points).

This plot shows that continuous and rapid churn worsens the update latency only mod-

erately – the median difference is only 164 milliseconds. Further, 85% of updates are

received within 1 second. Higher latencies were caused due to pulls (i.e., after a node re-

joins the tree), resulting in higher latencies at its descendants as well. The highest delays

due to churn are around 45 seconds – likely due to the failure of a single ancestor in the

dissemination path right after the update is published.

The results from this experiment shows that Rappel’s dissemination trees rapidly deliver

messages to subscribers. Stated differently, the structure of the dissemination trees exploits

network diversity by leveraging the underlying network coordinate system.

Lastly, we explore the value of β, i.e., maximum number of children, under the same

churn conditions in another experiment in Figure 6.6. In this plot, We observe that the
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Figure 6.6: Exploring the parameter space for β: the maximum number of children
in a dissemination tree.

performance of the tree improves with increasing β. However there is only marginal im-

provement, especially at the tail end, after β = 5. The favorable load imposed on interior

nodes justifies the choice of β = 5 for our implementation.

6.2.3 Locality-Awareness of Rappel

We evaluate Rappel’s ability to exploit interest diversity based on subscription traces from

LiveJournal. Starting with a seed set of 250 feeds, we obtain a network of 5582 subscribers

using X = 100 publishers. Each user subscribed to only a subset of the 100 publishers. All

results below are via simulations.

Figure 6.7 is the scatter plot of the feeds covered by a node’s friends set vs. the number

of feeds subscribed by the node. As there are numerous coincident points, the plot also

shows the median value for each data set. 91% of points lie on the perfect coverage line.

Other points just below the perfect coverage line are nodes that have a good majority

of their feeds covered. Observe that each node that subscribes to 9 or more feeds has a

minimum of 6 feeds covered, i.e., number of feeds covered is at least the same as the number

of friends (α = 6). However, several nodes subscribing to 6 or fewer feeds are unable to

exploit interest diversity due to scarcity of information locality.
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Figure 6.7: The friendship overlay provides high subscription coverage for most
nodes.

Each Rappel node has many neighbors (i.e., peers). However, few neighbors are used

in multiple roles, e.g., a neighbor may be a child in one dissemination tree and the parent

in another tree. We define neighbor overlap ratio as the total number of roles played by

neighbors divided by the number of distinct neighbors. A neighbor overlap ratio greater

than 1 signifies a bandwidth reduction due to reduced ping-ack traffic. Note that we use

only friends, parents, and children to calculate this ratio, i.e., to prevent any fans and

candidates from artificially inflating the ratio.

Figure 6.8(a) evaluates different components of Rappel’s friend selection heuristic (Sec-

tion 4.4.2). The metric plotted is the CDF of the subscription coverage. The subscription

coverage of a node is the percentage of subscribed feeds covered by at least one of its friends.

Only multi-feed subscribers were used in this plot to eliminate high bias from single-feed

subscribers. A CDF line that is farther to the left is more desirable. The plot shows that

considering both network distance and interest locality provides comparable coverage to the

“greedier” approach of considering only interest locality. On the other hand, Figure 6.8(b)

shows that 80+% of nodes are able to exploit some form of neighbor overlap if the friends

set utility is calculated using both interest locality and network distance (data shown via

square points on line). In comparison, the neighbor overlap ratio achieved by calculating
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Figure 6.8: Combining both interest and network locality reduces the number of
neighbors a node needs to maintain.

utility simply based on interest overlap alone is much worse (data plotted with circle points

on line). This shows that without the network proximity as a component to determine the

friends set, a node is unable exploit overlap between its tree neighbors and its friends. We

conclude that the Rappel utility function strikes a balance between network proximity and

interest locality.

Lastly, we explore the effective size of α in another experiment in Figure 6.9. α = 4

80



 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000

C
D

F
: S

ub
sc

rip
tio

n 
co

ve
ra

ge
 (

%
)

Nodes (w/ multiple subscriptions only)

Alpha = 4
Alpha = 5
Alpha = 6
Alpha = 7
Alpha = 8

Figure 6.9: Exploring the parameter space for α: the number of peers in the friend-
ship overlay.

provides 100% coverage for 73% of multi-feed subscribers, with only marginal improvement

for higher α values. Hence, we selected α = 6 to limit the gossiping overhead at nodes,

while providing high subscription coverage and friendship redundancy.

6.2.4 Comparison with Scribe

In this section we compare the performance of Rappel with Scribe [19]. We choose Scribe

for a comparative analysis as it is arguably the state of the art subject-based peer-to-peer

publish-subscribe system today. Scribe is known for its performance, and in fact, other

publish-subscribe systems, e.g., [86, 89], rely on Scribe to provide low latency message

dissemination.

We use the Scribe implementation available within FreePastry [31]. As the simulators

for both systems use a different codebase, we provide the same static latency matrix to

both the simulators to effectively generate one-on-one node mapping. Note that we use

the optimization that enforces that the feed’s dissemination tree is rooted at the publisher

node. We observe the data traffic in both systems1. The data traffic gives us an insight
1We do not compare control traffic across both systems as it is not obvious how to correctly compare the

two.
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Figure 6.10: Rappel and Scribe both achieve low absolute update dissemination
latency.

regarding the performance of the systems when the publisher disseminates updates at a

high rate.

In the first experiment, we compare the dissemination latency of a single update from a

publisher to 500 subscribers under two different scenarios. In the first scenario, the network

consists of only 501 nodes, whereas in the second scenario, there are a total of 5001 nodes.

Stated differently, there are an additional 4500 nodes (90%) that do not subscribe to this

publisher. Figure 6.10 shows that Rappel achieves low absolute latency, however it does

worse than Scribe. One reason is because Rappel leverages (inaccurate) network coordinates

instead of explicit pinging to select tree parents. Another reason is that our implementation

limits the publisher to β = 5 children. On the other hand, the data traffic load imposed

by Rappel is better balanced than Scribe. For instance, as Scribe is not noiseless, it uses

40 non-participating intermediate nodes to disseminate updates to 464 subscribers in the

larger system.

We perform another experiment using a trace of 100 publishers and 5582 multi-feed

subscribers. Each publisher disseminates a single update. Figure 6.11(a) shows that Scribe

nodes are imposed with highly variable amounts of data traffic. There is no correlation

between the traffic imposed on a node and its number of subscribed feeds. On the other
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Figure 6.11: Rappel imposes traffic load at a node that is proportional to the
number of its subscriptions.

hand, Figure 6.11(b) shows that the data traffic at each Rappel node scales with the number

of subscriptions it has. Note that most Scribe nodes forward no messages exhibiting a large

imbalance in data traffic.
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Figure 6.12: Rappel’s bandwidth overhead is low: traffic at a publisher scales
logarithmically with the number of subscribers.

6.2.5 Overhead Due to Control Bandwidth

In this section, we show the bandwidth overhead of Rappel due to control operations. Note

that the data traffic at a node due to a single update is bounded by β (=5), and the net

dissemination traffic depends on the rate at which the publisher posts updates.

We simulate two different settings: systems with 5000 and 10000 nodes. with each node

subscribing to 1 publisher. Figure 6.12 shows that the number of periodic rejoin requests

received per node at each height-level of the tree decreases exponentially. Further, the

number of rejoin requests received by nodes does not increase substantially even with the

doubling of subscriber population. This demonstrates scalability.

Next, we measure the bandwidth consumption in a system with 5000 subscribers and

1 publisher. The system is injected with churn using Overnet traces [9]. In spite of having

only 1 feed, Rappel nodes still maintain the friendship overlay described in Section 4.4. To

measure bandwidth, we count individual messages, i.e., a request and a reply are separate

messages.

Figure 6.13 shows traffic at a subscriber that ended the simulation with height=1. A

tree height=1 represents the worst-case load amongst subscriber nodes. Note that the node

does not initially start out with height=1, i.e., when the system is still bootstrapping.

However, it eventually moves up the tree due to its proximity to the publisher. Further,

the subscriber is offline from t = 1 hour to just after t = 1.5 hours. The data shows a
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Figure 6.13: Traffic load imposed by Rappel at a subscriber with tree height=1
(i.e., direct descendant of publisher) in a system with churn,

 0

 20

 40

 60

 80

 100

 0.25  0.5  1  2  4  8  16  32  64

N
od

es
 (

no
rm

al
iz

ed
 b

y 
pe

rc
en

til
e)

CDF: Messages per second

Median Traffic

100 pbs. + 5582 sbs. w/ churn
200 pbs. + 6467 sbs. w/o churn
300 pbs. + 10140 sbs. w/ churn
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breakdown of traffic by the different types of messages with the top-most line representing

total traffic. The subscriber’s bandwidth is moderate, staying mostly under 2 messages a

second. Since the amortized Rappel message size is 50 Bytes2, the stable traffic load at the

subscriber is about 100 Bps. The initial spike in traffic is due to network warm-up, as the

nodes initially join at a rate of 10 per minute.

Figure 6.14 shows that Rappel’s bandwidth usage is not affected drastically by an in-

crease in the numbers of publishers and subscribers. The median bandwidth is less than 2
2All Rappel messages except a Bloom filter reply and an ACK from “deep” parents (due to piggybacked

ancestry chain) are much smaller. This is a pessimistic estimate.
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Figure 6.15: Rappel’s bandwidth overhead grows linearly with the number of feed
subscriptions at a subscriber.

messages per second in all cases, which translates to approximately 100 Bps. One might no-

tice that the tail-end of the largest network degrades poorly. However, Figure 6.15 explains

the reasoning behind the degradation. The plot shows fairness of Rappel– traffic is high

only at nodes with large number of feed subscriptions. Further, the plot shows that Rappel

nodes entail an additional control bandwidth overhead of between 0.15 and 0.4 messages a

second (up to 20 Bps) per extra subscription.

6.3 Conclusions

In this chapter, we showed the performance of Rappel under both a PlanetLab deployment

and large-scale simulation. First, we validated the realism of results provided by the RANS

framework, by showing that the results output by the simulator match the results obtained

via a PlanetLab deployment. Next, via large-scale simulations, we showed that Rappel

exploits system diversity well: it disseminates message updates within fractions of a second

in PlanetLab and within a few seconds in simulation with thousands of nodes. Due to its

noiseless nature, Rappel is also fair: the overhead at each node grows only as a function

of the number and nature of subscriptions at that node. Rappel also has a low overhead:

subscriber nodes spend a median control bandwidth of around 100 Bps. Due to its ability

to exploit both interest and network diversity, Rappel imposes a more balanced workload
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on participating nodes than Scribe.
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Chapter 7

Experimental Evaluation of
Confluence

In this chapter, we present a thorough evaluation of Confluence via trace-driven simulations.

Recall that the goal of Confluence is to reduce the time it takes to fetch files from multiple

sources to a single sink. We show that Confluence is able to exploit diversity in both spatial

and temporal bandwidth across nodes to achieve a significant reduction in the transfer time.

The organization of this chapter is as follows: we first describe our implementation and

experimental methodology in Section 7.1. Next, in Section 7.2, we discuss the performance

of the Direct Transfer strategy, the most commonly used approach to transferring files

from multiple sources to a single sink. In Section 7.3, we explore the parameter space of

Confluence and choose the default parameters for our experiments. Lastly, in Section 7.4,

we compare the performance of Confluence with Direct Transfer under various scenarios.

7.1 Implementation and Experimental

Methodology

Implementation In order to accurately model network bandwidth (a fine granularity re-

quirement), we implemented Confluence using the ns2 [68] network simulator. Recall that

the RANS framework does not model network capacities in fine granularity. Our imple-

mentation of Confluence resides entirely in the application layer and uses TCP CUBIC [81]

as the transport protocol.

To maximally utilize network capacity, nodes must aggressively send blocks to each of

their receivers. However, sending packets aggressively via TCP takes control away from

the Confluence application; it cannot efficiently reroute the blocks based on a new transfer
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plan directive without the wasteful tear down of TCP connections. To address this issue, a

Confluence node x “buffers out” only one second worth of data (based on optimal transfer

rate f∗
xy) to node y. The application buffers out another block to TCP only upon reception

of an explicit ACK from a receiver. As 1 second is an order of magnitude higher than the

median delays experienced on Internet routes, our TCP buffer will generously saturate f∗
xy.

The measured transfer rate rxy is calculated by node x based on the number of ACKs

received. The measured rate is kept as a running average of the last 5 seconds. If bx

becomes 0 (it can’t send any more blocks because it is waiting for them to trickle in) or

if lxy becomes 0 (all blocks are already sent to node y), rxy is not updated until the next

recomputation interval. These stipulations are put in place to not penalize rxy (and in turn,

cxy – see Section 3.4.4) when the sender is unable to send blocks.

Experimental Methodology We constructed the experimental topologies based on

PlanetLab traces collected by S3 [102] on April 8, 2008. The traces include the two neces-

sary end-to-end network measurements: available bandwidth and latency. However, there is

a limitation of this data set: the information about the properties of many links is missing.

We construct our experimental topologies by avoiding such links, in the following manner:

starting with a random node, we iteratively constructed a node list. A new node (selected

at random) was only added to the list if the links connecting the given node to all previous

nodes on the list were not missing any information.

For each PlanetLab node, we create an additional ISP node. The IP link between a node

and its ISP has a bandwidth capacity equal to the highest end-to-end available bandwidth

observed at the corresponding PlanetLab node. Second, each possible pair of ISP nodes is

connected with an IP link whose bandwidth and latency characteristics are equal to that of

the measurements observed between their associated end-nodes. Note that multiple nodes

from the same (DNS) domain share the same ISP. As such, our simplified reconstruction of

the IP topology may be problematic. To mitigate this dilemma, we pruned all but one node

(selected randomly) from each domain. In a real deployment of Confluence, with multiple

hosts per domain, the selected host can act as the gateway for all other nodes in the domain.

This design choice works based on the assumption that the intra-domain connections (i.e.,
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hosts across a LAN) have greater available bandwidth than inter-domain connections (i.e.,

hosts across a WAN).

We are unaware of any existing systems built specifically for the n-to-1 file transfer

problem that Confluence targets. Therefore we compare with a simple, but surprisingly

strong, Direct Transfer strategy. In Direct Transfer, the sink node downloads the files

directly and simultaneously from the source nodes, using a running pool of m connections.

When a download completes from a node in this pool, another source is added to the pool.

For Confluence, we use only the participating source nodes and the sink node to calculate

the optimal transfer plan f∗. We believe that adding dedicated intermediary nodes will

improve upon the results, however we do not explore this option in order to make the

comparison with Direct Transfer a fair one.

For all of our experiments, the sink node downloads unique files of 100MB from all source

nodes. The Confluence s2s overlay uses k = 10 outgoing peers. Further, the recomputation

interval p is 15 seconds. Both of these values were selected based on experimental findings

(further discussed in Section 7.3).

7.2 Direct Transfer

We found that the transfer completion time for Direct Transfer improves with increasing

pool size. Figure 7.1 shows the time of completion for transfers from n = 49 source nodes

to a sink node (selected randomly) for different values of m – 10, 25, and 49. For the Direct

Transfer experiments, the source nodes were ordered randomly. As a consequence, the sink

node fetches files from the first m nodes initially. Once a file is fetched completely from a

source node, the sink node begins fetching from the next source node (if any remaining).

The x-axis represents the source nodes, sorted by the time they completed their file transfer

to the sink node. The y-axis is the transfer time (in seconds). Transfers complete faster

initially for lower values of m because there is more bandwidth available per transfer.

However, the total completion time is longer for lower values of m because the last few

transfers lag behind. With m = n, the lagged flows maybe just as slow, however they start
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Figure 7.1: Individual completion times of 49 source nodes with m = {10, 25, 49}
parallel connections: Direct Transfer performs well with a greater number of simul-
taneous connections as slow connections start off at an earlier stage.
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Figure 7.2: Ratio of completion time to fetch files for 99 source nodes vs. 49 source
nodes: Direct Transfer performs well with a large number of simultaneous source
nodes as they are able to keep the sink node saturated for a longer duration.

at time t = 0 and have a longer time to complete. Stated differently, the probability that

a lagged flow starts after t = 0 increases with decreasing values of m. Hence, in all the

subsequent experiments, we will use Direct Transfer with m = n.

Direct Transfer scales well when downloading from large numbers of sources. Figure 7.2
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compares the results of two different experiments. In the first experiment, files are down-

loaded from 49 source nodes to a sink node. For the next experiment, we required the sink

node to fetch files from 99 source nodes. To enable us to compare the two experiments, the

first 50 nodes are the same in both topologies. We measure the Direct Transfer time under

both scenarios via 50 different experimental runs: in a given run, one of the first 50 nodes

act as the sink and fetch files from the all other remaining nodes, which act as source nodes.

The x-axis represents the first 50 source nodes, sorted by the the capacity of their network

connectivity. The y-axis is the completion time ratio between transferring 99 source files

to transferring 49 source files. While the total data transferred in the second experiment is

roughly double the first experiment (99 source files vs. 49 source files), the completion time

is usually less than twice as long. In fact, when the network capacity of the sink node is

large, the completion times are nearly equivalent. This is because very well-connected sink

nodes have enough excess capacity to support a greater number of concurrent connections.

In contrast, a sink node with lower network capacity ends up itself being the bottleneck, and

cannot complete transfers any faster, even with a larger number of concurrent connections.

7.3 Exploring Confluence Parameter Space

In Section 3.4.2, we discussed the trade-offs between the benefits of maintaining up-to-date

information on the network state vs. the cost of measuring this information. For our next

experiment, we explore varying the value of k (the number of neighbors in the s2s overlay)

in a system of 50 nodes. Via experimentation, we were able to determine that a small

set of k = 10 peers is sufficient to get fast completion times. Figure 7.3 shows the total

completion time for each node acting as the sink and downloading from the other 49 nodes

(i.e., there is a separate run for each node acting as a sink). The x-axis represents the sink

nodes, sorted by the performance of Confluence with k = 10. More concretely, the first

few points (on the left) represent the most well-connected nodes, and the last few points

(towards the right) are the least well-connected nodes. The y-axis is the relative difference

in performance between k = 10 and other values of k, with k = 10 value acting as the
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Figure 7.3: Exploring the parameter space for k: the number of peers in the s2s
overlay.

baseline. A negative value implies better performance for other values of k, a positive value

implies better performance for k = 10. We observe that k = 2 performs the worst of the

lot – with many results taking twice as much time as k = 10. It should be noted that

for one special case (sink #33), k = 2 actually performs better than k = 10. This is the

case because the sink node’s capacity is being saturated with simply two peers, and having

more peers only leads to inter-flow congestion. It shows that there may be some benefit to

having a different value of k per node, especially when a node is the sink. For k = 15, we

see that performance is almost identical to k = 10. Thus, we set k = 10 as the default for

our experiments.

Figure 7.4 shows that recomputation consistently reduces the completion time. We use a

recomputation interval of p = 15 seconds for this experiment. (The recomputation interval

p is explored in the next experiment.) The plot shows the total completion time for each

of the 50 nodes acting as the sink and downloading from the other 49 nodes (i.e., there is a

separate run for each node acting as a sink). The x-axis represents the sink nodes, sorted

by the performance of Confluence with recomputation enabled. The y-axis is the absolute

completion time. We see that recomputation consistently improves performance, and in

some cases, the improvement is nearly 50%. Thus, Confluence enables recomputation by

93



 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50

C
om

pl
et

io
n 

tim
e 

(s
ec

)

Sink # (sorted by recomputation completion time)

Recomputation
No Recompuation

Figure 7.4: Periodic recomputation of the transfer plan leads to a greater reduction
in the total transfer time.

-3

-2

-1

 0

 1

 2

 3

 0  10  20  30  40  50

C
om

pl
et

io
n 

tim
e 

di
ff.

 (
%

)

Sink # (sorted by p=15 completion time)

p=10
p=15
p=60

Figure 7.5: Exploring the parameter space for p: the recomputation period.

default.

The last parameter we investigate is the recomputation interval p. Like the previous

experiment, we experiment with 50 nodes, with each node acting as a sink node (and

all other nodes as source nodes) using 50 different runs. Figure 7.5 shows a negligible

difference in performance of Confluence with a value of p = 15 seconds, a more aggressive

recomputation value of p = 10 seconds, and a less aggressive recomputation of p = 60
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Figure 7.6: Confluence outperforms Direct Transfer on both a planetary and a
continental scale topology. Note that the results with long completion times are
omitted. At best, Confluence finishes 70% faster, and at worst Confluence is only 2%
slower (inclusive of omitted results).

seconds. However, if network conditions change, a shorter period of recomputation can

adjust quicker. Thus, we pick an intermediate default value of p = 15 seconds.
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Figure 7.7: Confluence outperforms Direct Transfer even with cross traffic affecting
the sink. Note that the results with long completion times are omitted.

7.4 Confluence vs. Direct Transfer

We compare Confluence and Direct Transfer using two different topologies of 50 randomly

selected nodes: in the first topology, nodes were selected without restriction (i.e., world

wide) and the second topology was limited to nodes within North America. For both

topologies, we perform n = 50 simulations; each simulation had a different node act as

the sink node (the remaining 49 nodes were the source nodes). Figure 7.6(a) shows the

results from the the first topology (the results are sorted by the transfer time for Direct

Transfer). We observe that Confluence outperforms Direct Transfer (with transfer time

reductions of up to 40%), especially for the 35 best-connected nodes. The remaining 15

poorly-connected nodes yield similar results for Confluence and Direct Transfer as both

are able to continuously saturate the available bandwidth at the sink. Figure 7.6(b) shows

the results when the topology is constrained to North American nodes. We observe that

Confluence reduces transfer times by up to 70%. These experiments demonstrate that

Confluence is able to outperform Direct Transfer, due its ability to exploit both spatial

and temporal bandwidth, for systems with n = 50 on both planetary and continental scale

topologies.
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Figure 7.8: Even under different topologies, most nodes see at least some benefit
by using Confluence over Direct Transfer. The performance improvement is as much
as 75%.

Next, we repeat the previous experiment (Figure 7.6(a)), but with constant bit-rate

(CBR) cross traffic. Similar to the previous experiment, there are 50 runs, with each node

acting as the sink node. However, in this experiment, the sink node is sent a stream of

CBR traffic (from an external node, i.e., not any of the source nodes) that takes up 10% of

the sink node’s downlink capacity. Figure 7.7 shows that Confluence performs better than

Direct Transfer in most cases, even in presence of cross traffic. However, it should be noted

that Direct Transfer does slightly better than Confluence in a couple of scenarios primarily

due to the presence of cross traffic. This could be because cross traffic creates congestion

problems that impact the accuracy of graph updates during periodic recomputation.

Next, we show that Confluence behaves similarly given different PlanetLab topologies.

Figure 7.8 shows the CDF of the difference in completion time between Direct Transfer and

Confluence in a system with 50 nodes (with each node acting as the sink in separate runs).

A negative x value implies that Confluence finishes x% faster than Direct Transfer with

that node as the sink. For all topologies, Confluence reduces the transfer time for most

nodes (as sink) – with improvement of up to 75%.

As mentioned in Section 7.2, Direct Transfer works well with a large set of source
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nodes. In Figure 7.9, we see that the transfer time reduced by Confluence instead of Direct

Transfer decreases as the network size increases. The plot shows the CDF of the difference

in completion time between Direct Transfer and Confluence in a system with a varying

number of nodes (with each node acting as the sink in separate runs). On the x-axis, a

negative value implies that Confluence finishes x% faster than Direct Transfer for a given

node as the sink. With n = 25 nodes, 80% of the nodes see an improvement of at least

20%. With n = 50 nodes, 70% of nodes see at least some benefit with Confluence. Thus,

we conclude that Confluence is most useful when downloading files from a small set of

nodes (n ≤ 50), an appropriate setting for debugging various PlanetLab prototypes and

applications (and for meshes of clouds and data-centers).

7.5 Conclusions

In this chapter, we showed that Confluence is able to exploit both spatial and temporal

diversity in available bandwidth across the network, to significantly reduce the time taken to

transfer large files from multiple sources to a single sink. Confluence performed better than
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Direct Transfer on both a planetary and a continental scale topology, with up to 50 nodes.

The benefits of Confluence started to diminish as the number of nodes increase because

the naive Direct Transfer strategy is able to saturate the sink’s available bandwidth for a

greater duration with a large number of publishers. Yet, we believe Confluence would be

useful for wide-area measures of clouds and data-centers.
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Chapter 8

Concluding Remarks

In this thesis, we discussed designs that exploit system diversity to improve performance

and scale of subject-based peer-to-peer publish-subscribe systems.

We first presented, Confluence, a system that significantly reduces the time to trans-

fer large files from multiple publishers (sources) to a single subscriber (sink node). By

constructing a novel source-2-source overlay, Confluence lets nodes collaborate with one

another to exploits spatial diversity in available bandwidth and route blocks around more

congested links towards the sink. Via the use of periodic recomputations, Confluence dy-

namically adapts the flow of blocks across the s2s overlay to exploit the temporal diversity

in available bandwidth. Via extensive experimental evaluation, we show that Confluence

performs better than Direct Transfer on both a planetary and a continental scale topology,

with up to 50 nodes.

Next, we presented the design of Rappel– the first subject-based publish-subscribe sys-

tem that is noiseless, truly peer-to-peer, and provides soft-real dissemination of messages.

Rappel nodes exploits interest and network by seeking a set of peers (“friends”) that pro-

vide good subscription coverage while being in close network proximity. High subscription

coverage allows nodes subscribing to numerous subjects to receive relevant messages via

far fewer number of peers than subjects. Via deployment and large-scale simulations, we

show that Rappel exploits system diversity well: it disseminates message updates within

fractions of a second because peers are within close network proximity. Further, due to its

noiseless nature, Rappel is also fair: the overhead at each node grows only as a function

of the number and nature of subscriptions at that node. Due to its ability to exploit both

interest and network diversity, Rappel imposes a more balanced workload on participating

nodes than current state of the art subject-based peer-to-peer publish-subscribe system.
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Finally, we presented the Realistic Application-level Network Simulation (RANS) frame-

work. The RANS framework provides a modular programming interface that can be lever-

aged to produce both realistic simulation results and a ready-to-deploy sockets binary. We

showed the design and implementation of a realistic and reusable simulator for PlanetLab,

and further showed that the results generated by the RANS simulation framework closely

match the results obtained by performing the same experiments on a PlanetLab deploy-

ment. The RANS framework produces results that are representative of the real-world

performance due to selective granularity simulation based on extensive usage of traces of

Internet topology [107], end-to-end latency fluctuations between PlanetLab nodes [52], and

end-user churn observed in peer-to-peer file sharing applications [9].

8.1 Future Directions

Several future directions arise out of work presented in this thesis. We elaborate on a few

of them below.

One direction would be to add support for multiple sink nodes in Confluence. A common

case in a shared infrastructure testbed such as PlanetLab is that two or more researchers

may be simultaneously fetching large files from distinct or overlapping sets of PlanetLab

hosts to their local workstation. A solution to this problem would have to take into con-

sideration all available bandwidth across the network, and calculate the transfer plan that

reduces the total transfer time across all end users.

A second direction would be to redesign Rappel to tolerate an uncooperative environ-

ment. Such an environment could range from containing freeloading users to malicious users,

to spurious publishers. Protecting the confidentiality and privacy of users by safeguarding

their feed subscription information may also provide an interesting challenge. Besides secu-

rity, the design of Rappel can be modified to support larger size messages than are common

in RSS updates. Supporting streaming data for multi-interest subscribers (i.e., multimedia

content), remains an unexplored research direction.

Thirdly, the RANS framework can be extended to even larger scales by using multiple
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threads while preserving determinism. With the rise in popularity and adoption of multicore

machines, a deterministic multi-threaded discrete-event simulator would provide a useful

performance boost. An even more ambitious future direction would be to scale the RANS

framework by using a cloud infrastructure.
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